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Abstract. This survey concerns applications of mathematical programming in the context of

classification. We mainly discuss two supervised learning methods: Support Vector Machines

(SVMs) and consistent biclustering together with their extensions. We also refer to some recently

proposed classification techniques that utilize optimization theory.
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1. Introduction

Machine learning can be defined as the process by which a computer system improves its
performance based on previous results. There are very successful implementations of machine
learning such as search engines, language processing, financial analysis, medical diagnosis, and
DNA sequence classification. Most of these applications rely on pattern recognition which is
generally concerned with classifying objects based on their characteristics. Characteristics of
an object are generally referred to as features, which are the measures that distinguish that
object from the other objects. Similarity between two objects can be evaluated as a function
of features they possess. Objects can be grouped into classes based on their similarity. These
classes are represented in different ways such as approximation functions or boundary functions
between the classes. Arranging objects into such classes based on their position relative to these
functions is called classification.

Machine learning within the classification framework can be categorized into two main classes.
Supervised learning is the capability of a system to learn from a set of examples, which is a set
of input/output pairs. The input is a vector of features of an object, and the output is the label
for the object (i.e., class that the object belongs to). A set of objects with feature vectors and
a class labels is called a training set. This set is used to derive classification functions. The
trained system is capable of predicting the label of an unlabeled object. A set of objects with
feature vectors whose label information is unknown is called a test set. The term supervised
originates from the fact that the labels for the objects in the training set are provided as input,
and therefore are determined by an outside source, which can be considered as the supervisor.
On the contrary, unsupervised learning is the case where the objects are not labeled with any
class information, and learning is about forming classes of objects based on similarities between
their features.
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2. Support Vector Machines

Initially developed by Vapnik [48], Support Vector Machines (SVMs) are the state-of-the-art
supervised machine learning methods. SVM classifiers classify pattern vectors which are as-
sumed to belong to two different classes. The classification function is defined by a hyperplane
that separates two classes. There are infinitely many hyperplanes that separate the two classes
but the SVM classifier finds the hyperplane that maximizes the distance from the convex hulls
of both classes by solving a quadratic convex optimization problem. The success and robust-
ness of SVM classifiers rely on strong fundamentals from the statistical learning theory, from
which generalization bounds for SVM classifiers are derived. When there are sufficiently many
data points in the training set, SVMs are proven to minimize the generalization error for any
distribution. SVMs can be extended to classification of nonlinear data by implicitly embedding
the original data in a nonlinear space using kernel functions [45]. Techniques for generalizing
the SVM classifiers for multiple classes are introduced theoretically in [48] but there are many
drawbacks of hyperplane based multi-class learning techniques [6].

SVMs have a wide spectrum of application areas ranging from pattern recognition [31] and text
categorization [23] to biomedicine [7, 13, 36, 39], brain-computer interface [28, 18], and financial
applications [22, 47]. The training is performed by optimizing a quadratic convex function that
is subject to linear constraints. There are many general purpose methods to solve QP problems
such as quasi-newton, primal-dual and interior-point methods [4]. The general purpose methods
are suitable for small size problems but are not fast enough for large problems. Faster methods
usually involve chunking [37] and decomposition [40] techniques, which use subsets of points to
find the optimal hyperplane. SVM Light [24] and LIBSVM [21] are among the most frequently
used implementations that use chunking and decomposition methods efficiently. There are also
alternative methods such as Generalized Proximal SVM (GEPSVM) [34] that approximate the
two classes with two hyperplanes instead of a single hyperplane separating them.

We start the review for SVMs with maximal margin classifier and further extend it to soft
margin classifiers. Alternative formulations for different error norms are also given for SVMs.

2.1. Formulation. In a typical binary classification problem, sets C+ and C− are composed
of pattern vectors xi ∈ Rd, i = 1, . . . , n. If xi ∈ C+ then it is given the label yi = 1; otherwise
xi ∈ C− and is given the label yi = −1. The classification problem deals with determining which
class a new pattern vector xi 6∈ {C+ ∪C−} belongs to. SVM classifiers solve this problem by
finding a hyperplane (w, b) that separates these two classes from each other with the maximum
interclass margin.

2.2. Maximal Margin Classifier. Maximal margin classifier is the simplest form of SVM
classifiers that solves the problem of finding a separating hyperplane with the maximum inter-
class margin. The underlying optimization problem for the maximal margin classifier is only
feasible if the two classes of pattern vectors are linearly separable. However, most of the real life
classification problems are not linearly separable. Nevertheless, the maximal margin classifier
can be extended to produce feasible separation rules for data sets that are nor linearly separable.
The solution to the optimization problem in the maximal margin classifier minimizes the bound
on the generalization error [49]. The basic premise of this method lies in the minimization of a
convex optimization problem with linear inequality constraints, which can be solved efficiently
by many alternative methods [4].
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We start our review with the definition of a hyperplane, 〈w,x〉+b = 0, which is represented as
the normal vector w and the offset parameter b. The functional distance between a data point
xi and the hyperplane is given by 〈w,xi〉+ b and the geometric distance is (〈w,xi〉+ b)/‖w‖.

There is inherent degree of freedom in specifying a hyperplane as (λw, λb). A canonical
hyperplane is the one from which the closest pattern vector has a functional distance of 1, i.e.,
mini=1,...,n |〈w,xi〉+ b| = 1.

Next, consider two pattern vectors x+ and x−, belonging to classes C+ and C−, respectively
and they are the closest pattern vectors to a canonical hyperplane, such that 〈w,x+〉 + b = 1
and 〈w,x−〉 + b = −1. It is easy to show that the geometric margin between these pattern
vectors and the hyperplane are both equal to 1/‖w‖.

Maximizing the margin 1/‖w‖ for the canonical hyperplane is equivalent to minimizing ‖w‖
or ‖w‖2. In the following optimization problem, canonical hyperplane is ensured for each point
xi with a label yi due to constraints (1b) while the margin is maximized by minimizing ‖w‖.

min
1
2
‖w‖2 (1a)

subject to yi(〈w,xi〉+ b) ≥ 1 i = 1 . . . , n. (1b)

Using the optimal solution for (1), a new pattern vector x′ can be classified as positive if
〈w∗,x′〉+ b∗ > 0, and negative otherwise.

2.3. Soft Margin Classifier. Most real life problems are composed of non separable data
which is generally due to noise. In this case slack variables ξi are introduced for each pattern
vector xi in the training set. Slack variables allow misclassifications for each pattern vector;
however, they are subject to a penalty of C/2 to avoid trivial solutions. The maximum margin
formulation can be augmented to soft margin formulation as

(a) (b)

Figure 1. Maximal Margin Classifier (a) and Soft Margin Classifier (b)

min
1
2
‖w‖2 +

C

2

n∑

i=1

ξ2
i (2a)

subject to yi(〈w,xi〉+ b) ≥ 1− ξi i = 1, . . . , n, (2b)

where nonnegativity of the slack variables are assured implicitly since the solution cannot be
optimal when ξi < 0 for any pattern vector.
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The 2-norm of the slack are penalized in the objective of (2). An alternative formulation
involves penalization of the 1-norm slack variables in the objective. However, for the 1-norm
case, we need to impose nonnegativity on the slack variables explicitly.

min
1
2
‖w‖2 +

C

2

n∑

i=1

ξi, (3a)

subject to yi(〈w,xi〉+ b) ≥ 1− ξi i = 1, . . . , n, (3b)

ξi ≥ 0 i = 1, . . . , n. (3c)

Both 1-norm and 2-norm SVM formulations are called the primal formulations and equivalent
dual formulations can be obtained using mathematical programming theory. The significance of
the dual formulations is that they do not involve inequality constraints, and they allow the kernel
trick to be introduced for nonlinear classification. In order to obtain the dual formulation of
the SVM problem, we first derive the Lagrangian function of the primal problem. This function
provides a lower bound for the solution of the primal problem. Next, we differentiate the
Lagrangian function with respect to the primal variables and impose stationarity. We substitute
the equivalent expressions for each primal variable back in the Lagrangian function or add them
as constraints. The dual problem is obtained by maximizing the resulting function with the new
constraints. The dual problem is a concave maximization problem, which can also be solved
efficiently.

2.4. Dual Formulation and Kernel Trick. The Lagrangian function for the 2-norm SVM
primal problem is given as follows.

L(w, b, ξ,α) =
1
2
‖w‖2 +

C

2

n∑

i=1

ξ2
i −

n∑

i=1

αi [yi(〈w,xi〉+ b)− 1 + ξi] . (4)

Differentiating L with respect to the primal variables w and b, and assuming stationarity, we
obtain

∂L

∂w
= w −

n∑

i=1

yiαixi = 0;
∂L

∂b
=

n∑

i=1

yiαi = 0;
∂L

∂ξi
= Cξi − αi = 0. (5)

We can substitute the expressions in (5) back in the Lagrangian function to obtain the fol-
lowing dual formulation, which gives the hyperplane w∗ =

∑n
i=1 yiα

∗
i xi.

max
n∑

i=1

αi − 1
2

n∑

i=1

n∑

j=1

yiyjαiαj〈xi,xj〉 − 1
2C

n∑

i=1

α2
i , (6a)

subject to
n∑

i=1

yiαi = 0 (6b)

αi ≥ 0 i = 1, . . . , n. (6c)

Note from Karush-Kuhn-Tucker complementarity conditions that, the constraints in the primal
problem are binding for those with the corresponding dual variable α∗i > 0. Knowing w∗, we
can find b∗ using

b∗ =
∑

i:α∗i >0

yi − 〈w∗,xi〉. (7)
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The derivation for the 1-norm dual formulation is very similar to that of 2-norm, which is given
as

max
n∑

i=1

αi − 1
2

n∑

i=1

n∑

j=1

yiyjαiαj〈xi,xj〉, (8a)

subject to
n∑

i=1

yiαi = 0 (8b)

0 ≤ αi ≤ C i = 1, . . . , n. (8c)

Kernels are introduced in classification to provide enhanced similarity measures between pattern
vectors. They basically transform the original input space, X to a usually higher dimensional
dot-product space H called the feature space, with a map Φ : X → H, such that K(xi,xj) =
〈Φ(xi),Φ(xj)〉. The main concept is focused on the dot product of two mapped pattern vectors.
Mapping the pattern vectors may become computationally intractable, while implicitly finding
their dot products in the feature space have the same complexity as in the input space, in
general.

Kernel K is required to be positive semidefinite in order to define a dot product space and
create a feature map. Here a positive semidefinite kernel is defined as a function on X × X for
a nonempty set X , which for all x1, . . . ,xn ∈ X gives rise to a positive semidefinite matrix K
such that

∑
i,j cicjKij ≥ 0 for all ci ∈ R. In the literature it was shown that any algorithm that

works on dot products can be kernelized through the kernel trick [42]. In the machine learning
literature, the kernel trick is introduced by Mercer’s theorem and explains the geometry of feature
spaces [14]. It can be considered as the characterization of a kernel K(x,x∗). The conditions for
Mercer’s theorem are equivalent to the requirement that the corresponding matrix is positive
semidefinite for any finite subset of X . The convenience of kernels in SVMs is highlighted with
the dual formulation. The linear dot product 〈xi,xj〉 can be replaced with an appropriate
non-linear kernel K.

2.5. Research Directions. Recent advances in SVM classifiers are based on generalizations of
traditional classification problem. Seref et al. [43] introduce novel selective linear and nonlinear
classification methods, in which sets of pattern vectors sharing the same label are given as input.
One pattern vector is selected from each set in order to maximize the classification margin with
respect to the selected positive and negative pattern vectors. The problem of selecting the best
pattern vectors is referred to as the hard selection problem. Kernelized hard selection problems
are also developed for classification. However, these combinatorial problems cannot be solved
in polynomial time unless P = NP [44]. Alternative approaches are proposed with relaxed
formulations. The selective nature of the these formulations are satisfied by the restricted free
slack concept. The intuition behind this concept is to reverse the combinatorial selection problem
by detecting influential pattern vectors which require free slack to decrease their effect on the
classification functions. Iteratively removing problematic pattern vectors, we can find those with
better classification results.

Two variations of the free slack method, namely pooled free slack (PFS) and free slack per set
(FSS), are introduced for selective linear classification together with kernelized dual formulations
for selective nonlinear classification. These methods are further extended to direct separation
by increasing the total free slack to diminish the effect of multiple pattern vectors per set and
provide more flexibility for the hyperplane to reorient itself with respect to well separated pattern
vectors. The performance of iterative elimination and direct selection algorithms are compared
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with each other, as well as with a näıve elimination algorithm that uses standard SVM method
and ideas from the proposed methods. Results are reported for linear and nonlinear simulated
data.

Kundakcioglu et al. [27] consider the margin maximization problem within the multiple
instance learning (MIL) context. Training data is composed of labeled bags of instances. Despite
the large number of margin maximization based classification methods, there are only a few
methods that consider the margin for MIL problems in the literature. A combinatorial margin
maximization problem is formulated for multiple instance classification which is proved to be
NP-hard. Kernel trick is applied on this formulation for classifying nonlinear MIL data. A
branch and bound algorithm is proposed that outperforms a leading commercial solver in terms
of the best integer solution and optimality gap in a majority of image annotation and molecular
activity prediction test cases. The major difference between the MIL setting and the selective
setting is the interpretation of negative bags. In selective learning, a selection is performed on
negative bags as well as positive bags. In MIL, on the other hand, only actual positives are to
be discovered where all negative instances must be kept.

Next, we introduce consistent biclustering, another classification technique that employs math-
ematical programming techniques.

3. Consistent Biclustering

Biclustering is a methodology allowing simultaneous partitioning of a set of samples and
their features into classes. Samples and features classified together are supposed to have a high
relevance with each other which can be observed by intensity of their expressions. The notion of
consistency for biclustering is defined using interrelation between centroids of sample and feature
classes. Previous works on biclustering concentrated on unsupervised learning and did not
consider employing a training set, whose classification is given. However, with the introduction
of consistent biclustering, significant progress has been made in supervised learning as well.

A data set is normally given as a rectangular m× n matrix A, where each column represents
a data sample and each row represents a feature

A = (aij)m×n,

where aij is the expression of ith feature in jth sample.
Biclustering is applied by simultaneous classification of the samples and features into k classes.

Let S1, S2, . . . , Sk denote the classes of the samples (columns) and F1, F2, . . . , Fk denote the
classes of features (rows). Formally biclustering can be defined as a collection of pairs of sample
and feature subsets B = {(S1, F1), (S2, F2), . . . , (Sk, Fk)} such that

S1, S2, . . . , Sk ⊆ {aj}j=1,...,n,

k⋃

r=1

Sr = {aj}j=1,...,n,

Sζ

⋂
Sξ = ∅ ⇔ ζ 6= ξ,

F1, F2, . . . , Fk ⊆ {ai}i=1,...,m,

k⋃

r=1

Fr = {ai}i=1,...,m,

Fζ

⋂
Fξ = ∅ ⇔ ζ 6= ξ,
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where {aj}j=1,...,n and {ai}i=1,...,m denote the set of columns and rows of the matrix A, respec-
tively.

The ultimate goal in a biclustering problem is to find a classification for which samples from
the same class have similar values for that class’ characteristic features. The visualization of a
reasonable classification should reveal a block-diagonal or “checkerboard” pattern. A detailed
survey on biclustering techniques can be found in [10] and [32].

One of the early algorithms to obtain an appropriate biclustering is proposed in [20], which is
known as block clustering. Given a biclustering B, the variability of the data in the block (Sr, Fr)
is used to measure the quality of the classification. A lower variability in the resulting problem
is preferable. The number of classes should be fixed in order to avoid a trivial, zero variability
solution in which each class consists of only one sample. A more sophisticated approach for
biclustering was introduced in [12], where the objective is to minimize the mean squared residual.
In this setting, the problem is proven to be NP-hard and a greedy algorithm is proposed to find
an approximate solution. A simulated annealing technique for this problem is discussed in [8].

Dhillon [16] proposes another biclustering method for text mining using a bipartite graph. In
the graph, the nodes represent features and samples, and each feature i is connected to a sample
j with a link (i, j), which has a weight aij . The total weight of all links connecting features and
samples from different classes is used to measure the quality of a biclustering. A lower value
corresponds to a better biclustering. A similar method for microarray data is suggested in [25].

In [17], the input data is treated as a joint probability distribution between two discrete sets
of random variables. The goal of the method is to find disjoint classes for both variables. A
Bayesian biclustering technique based on the Gibbs sampling can be found in [46].

The concept of consistent biclustering is introduced by Busygin et al. [11]. Formally, a biclus-
tering B is consistent if in each sample (feature) from any set Sr (set Fr), the average expression
of features (samples) that belong to the same class r is greater than the average expression
of features (samples) from other classes. The model for supervised biclustering involves solu-
tion of a special case of fractional 0-1 programming problem whose consistency is achieved by
feature selection. Computational results on microarray data mining problems are obtained by
reformulating the problem as a linear mixed 0-1 programming problem.

An improved heuristic procedure is proposed in [35], where a linear programming problem
with continuous variables is solved at each iteration. Numerical experiments on the data, which
consists of samples from patients diagnosed with acute lymphoblastic leukemia (ALL) or acute
myeloid leukemia (AML) diseases (see [2, 3, 19, 50, 51]), confirm that the algorithm outperforms
the previous results in the quality of solution as well as computation time. Busygin et al. [9] use
consistent biclustering to analyze scalp EEG data obtained from epileptic patients undergoing
treatment with a vagus nerve stimulator (VNS).

3.1. Formulation. Given a classification of the samples, Sr, let S = (sjr)n×k denote a 0-1
matrix where sjr = 1 if sample j is classified as a member of the class r (i.e., aj ∈ Sr), and
sjr = 0 otherwise. Similarly, given a classification of the features, Fr, let F = (fir)m×k denote
a 0-1 matrix where fir = 1 if feature i belongs to class r (i.e., ai ∈ Fr), and fir = 0 otherwise.
Construct corresponding centroids for the samples and features using these matrices as follows

CS = AS(ST S)−1 = (cS
iξ)m×r, (9)

CF = AT F (F T F )−1 = (cF
jξ)n×r. (10)

The elements of the matrices, cS
iξ and cF

jξ, represent the average expression of the corresponding
sample and feature in class ξ, respectively. In particular,
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cS
iξ =

∑n
j=1 aijsjξ∑n

j=1 sjξ
=

∑
j|aj∈Sξ

aij

|Sξ| ,

and

cF
jξ =

∑m
i=1 aijfiξ∑m

i=1 fiξ
=

∑
i|ai∈Fξ

aij

|Fξ| .

Using the elements of matrix Cs, one can assign a feature to a class where it is over-expressed.
Therefore feature i is assigned to class r̂ if cS

ir̂ = maxξ{cS
iξ}, i.e.,

ai ∈ F̂r̂ =⇒ cS
ir̂ > cS

iξ, ∀ξ, ξ 6= r̂. (11)

Note that the constructed classification of the features, F̂r, is not necessarily the same as
classification Fr. Similarly, one can use the elements of matrix CF to classify the samples.
Sample j is assigned to class r̂ if cF

jr̂ = maxξ{cF
jξ}, i.e.,

aj ∈ Ŝr̂ =⇒ cF
jr̂ > cF

jξ, ∀ξ, ξ 6= r̂. (12)

As before, the obtained classification Ŝr does not necessarily coincide with classification Sr.
Biclustering B is referred to as a consistent biclustering if relations (11) and (12) hold for all

elements of the corresponding classes, where matrices CS and CF are defined according to (9)
and (10), respectively.

A data set is biclustering-admitting if some consistent biclustering for it exists. Furthermore,
the data set is called conditionally biclustering-admitting with respect to a given (partial) clas-
sification of some samples and/or features if there exists a consistent biclustering preserving the
given (partial) classification.

Theorem 3.1. Let B be a consistent biclustering. Then there exist convex cones P1, P2, . . . , Pk ⊆
Rm such that only samples from Sr belong to the corresponding cone Pr, r = 1, . . . , k. Similarly,
there exist convex cones Q1, Q2, . . . , Qk ⊆ Rn such that only features from class Fr belong to the
corresponding cone Qr, r = 1, . . . , k.

See [11] for the proof of Theorem 3.1. It also follows from the proven conic separability that
convex hulls of classes do not intersect.

By definition, a biclustering is consistent if Fr = F̂r and Sr = Ŝr. However, a given data set
might not have these properties. The features and/or samples in the data set might not clearly
belong to any of the classes and hence a consistent biclustering might not be constructed. In
such cases, one can remove a set of features and/or samples from the data set so that there
is a consistent biclustering for the truncated data. Selection of a representative set of features
that satisfies certain properties is a widely used technique in data mining applications. This
feature selection process may incorporate various objective functions depending on the desirable
properties of the selected features, but one general choice is to select the maximal possible
number of features in order to lose minimal amount of information provided by the training set.

A problem with selecting the most representative features is the following. Assume that there
is a consistent biclustering for a given data set, and there is a feature, i, such that the difference
between the two largest values of cS

ir is negligible, i.e.,

min
ξ 6=r̂

{cS
ir̂ − cS

iξ} ≤ α,

where α is a small positive number. Although this particular feature is classified as a member
of class r̂ (i.e., ai ∈ Fr̂), the corresponding relation (11) can be violated by adding a slightly
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different sample to the data set. In other words, if α is a relatively small number, then it is
not statistically evident that ai ∈ Fr̂, and feature i cannot be used to classify the samples. The
significance in choosing the most representative features and samples comes with the difficulty
of problems that require feature tests and large amounts of samples that are expensive and time
consuming. Some stronger additive and multiplicative consistent biclusterings can replace the
weaker consistent biclustering. Additive consistent biclustering is introduced in [35] by relaxing
(11) and (12) as

ai ∈ Fr̂ =⇒ cS
ir̂ > αS

i + cS
iξ, ∀ξ, ξ 6= r̂, (13)

and
aj ∈ Sr̂ =⇒ cF

jr̂ > αF
j + cF

jξ, ∀ξ, ξ 6= r̂, (14)

respectively, where αF
j > 0 and αS

i > 0.
Another relaxation in [35] is multiplicative consistent biclustering where (11) and (12) are

replaced with

ai ∈ Fr̂ =⇒ cS
ir̂ > βS

i cS
iξ, ∀ξ, ξ 6= r̂, (15)

and
aj ∈ Sr̂ =⇒ cF

jr̂ > βF
j cF

jξ, ∀ξ, ξ 6= r̂, (16)

respectively, where βF
j > 1 and βS

i > 1.
Supervised biclustering uses accurate data sets that are called the training set to classify

features to formulate consistent, α-consistent and β-consistent biclustering problems. Then, the
information obtained from these solutions can be used to classify additional samples that are
known as the test set. This information is also useful for adjusting the values of vectors α and
β to produce more characteristic features and decrease the number of misclassifications.

Given a set of training data, construct matrix S and compute the values of cS
iξ using (9).

Classify the features according to the following rule: feature i belongs to class r̂ (i.e., ai ∈ Fr̂),
if cS

ir̂ > cS
iξ, ∀ξ 6= r̂. Finally, construct matrix F using the obtained classification. Let xi denote

a binary variable, which is one if feature i is included in the computations and zero otherwise.
Consistent, α-consistent and β-consistent biclustering problems are formulated as follows.

CB:

max
x

m∑
i=1

xi (17a)

subject to

∑m
i=1 aijfir̂xi∑m

i=1 fir̂xi
>

∑m
i=1 aijfiξxi∑m

i=1 fiξxi
, ∀r̂, ξ ∈ {1, . . . , k}, r̂ 6= ξ, j ∈ Sr̂ (17b)

xi ∈ {0, 1}, ∀i ∈ {1, . . . , m}, (17c)

α-CB:

max
x

m∑
i=1

xi (18a)

subject to

∑m
i=1 aijfir̂xi∑m

i=1 fir̂xi
> αj +

∑m
i=1 aijfiξxi∑m

i=1 fiξxi
, ∀r̂, ξ ∈ {1, . . . , k}, r̂ 6= ξ, j ∈ Sr̂ (18b)

xi ∈ {0, 1}, ∀i ∈ {1, . . . , m}, (18c)
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β-CB:

max
x

m∑
i=1

xi (19a)

subject to

∑m
i=1 aijfir̂xi∑m

i=1 fir̂xi
> βj

∑m
i=1 aijfiξxi∑m

i=1 fiξxi
, ∀r̂, ξ ∈ {1, . . . , k}, r̂ 6= ξ, j ∈ Sr̂ (19b)

xi ∈ {0, 1}, ∀i ∈ {1, . . . , m}. (19c)

The goal in the CB problem is to find the largest set of features that can be used to construct
a consistent biclustering1. The α-CB and β-CB problems are similar to the original CB problem
but the aim is to select features that can be used to construct α-consistent and β-consistent
biclusterings, respectively.

In (17), xi, i = 1, . . . m are the decision variables. xi = 1 if i-th feature is selected, and xi = 0
otherwise. fik = 1 if feature i belongs to class k, and fik = 0 otherwise. The objective is to
maximize the number of features selected and (17b) ensures that the biclustering is consistent
with respect to the selected features.

Theorem 3.2. Feature selection for consistent biclustering (i.e. formulation (17)) is NP-hard.

See [26] for the proof of Theorem 3.2.

Corollary 3.1. Formulations (18) and (19) are NP-hard.

Proof. Problem (17) is a special class of Problem (18) when αj = 0 for j ∈ Sr̂. Similarly Problem
(17) is a special class of Problem (19) when βj = 1 for all j ∈ Sr̂. Hence both (18) and (19) are
NP-hard. ¤

4. Other Classification Methods

Recently, Bertsimas and Shioda introduce mixed-integer optimization methods to the classical
statistical problems of classification and regression and construct a software package called CRIO
(classification and regression via integer optimization) [5]. CRIO separates data points into
different polyhedral regions. In classification, each region is assigned a class, while in regression
each region has its own distinct regression coefficients. Computational experimentations with
generated and real data sets show that CRIO is comparable to and often outperforms the
current leading methods in classification and regression. These results illustrate the potential
for significant impact of integer optimization methods on computational statistics and data
mining.

Logical Analysis of Data (LAD) is a technique that is used for risk prediction in medical
applications [1]. This method is based on combinatorial optimization and boolean logic. The
goal is essentially classifying groups of patients at low and high mortality risk and LAD is shown
to outperform standard methods used by cardiologists.

When there exist several classifiers, the problem of evaluation of classifiers’ conclusions arises.
In [15], the principal expert method (the PE-method) is described to resolve this conflict for the
case of supervised classification. Another supervised learning method is by Mammadov et al.
[33] where a multi-label classifier is considered. See [29, 30, 38, 41] for surveys on classification
and disease prediction methods that use mathematical programming techniques.

1Note that the number of selected features is the most commonly used objective function. Other objectives

such as maximizing the weighted sum of selected features can also be considered.
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5. Concluding Remarks

In this paper, we summarize some of the recent studies on classification that utilize mathemat-
ical programming techniques. This review is not exhaustive in that, we explore some techniques
in depth and give references for other studies. Applications of optimization already improve qual-
ity of some applications but there are still many open problems in theoretical computer science.
Mathematical programming techniques will certainly continue to provide ongoing revelations in
the constantly growing field of pattern recognition and machine learning.
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