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A smooth sea never made a skillful sailor.

English Proverb

A great teacher is one who realizes that he himself is also a student and whose goal

is not dictate the answers, but to stimulate his students creativity enough so that they go

out and find the answers themselves.

Herbie Hancock

If you are not willing to learn, no one can help you.

If you are determined to learn, no one can stop you.

Zig Ziglar
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Course Statistics

This section presents some statistics regarding the 531 students who have taken this course

until the beginning of Spring 2016-2017 semester. 288 of these students passed the course.

Here are some stats regarding the exams.

All Students

1
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2 Course Statistics

Note that the peak right above 50.00 line is coincidental and certainly an outcome of

students’ effort. I never look at the names or previous exam grades of students when grading

papers. Below is another proof of that:

Next, I present stats for a focus group of 131 students, who barely passed the course.
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Course Statistics 3

Students who Barely Passed
These students are in the [50, 60) range, thus passed with either D or D+.

Some conclusions I derive from this analysis:
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4 Course Statistics

• In Midterm 1, you should receive at least 60, preferably 80’s-90’s (which is doable

as shown above)

• In Midterm 2, you should stay in the upper semi-half of this normal distribution of

mean 70. This is the exam with most mechanical work; minimal creativity needed.

Therefore, the higher you get, the easier it will be later.

• You need to work really hard in class and during office hours after Midterm 2. Deep

understanding, more insights, and some creativity needed. Exam 3 will actually be

the final exam for those who are shooting for just passing the course. Half of the

focus group received more than 43 in Midterm 3. Let me put it this way; a minimum

of 40 points in Midterm 3 is a lot more than 40 × 30%=12 points in your course

total; it ensures that you know the fundamentals of the course and you can do good

in the final.

• Despite being comprehensive, final exam stats is similar to Midterm 3, which sup-

ports my claim above. Some semesters Final is slightly harder, some semesters

Midterm 3. You should not be disconnected from the subject matter, certainly

receive something above 30’s in the Final.

• Those who passed consistently receive above 30 in all exams. A couple of exceptions

definitely make it up in another (probably earlier) exam by showing an extraordinary

effort.

Bottomline

Never get below 20 in any exam! Collect a total of at least 150 points

in the first 2 Midterm exams. Remember, the real challenge starts after

Midterm 2! It is very unlikely to make-up a bad Midterm 3 grade in the

Final.
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Chapter 1

Mathematical Modeling in Operations

Research

(Weeks 1-3)

1.1 Optimization

Optimization is the most vital aspect of Operations Research (OR). Mathematical Modeling

is the heart of optimization. So we start with the details, requirements, and examples of

optimization models1.

The business environment today obviously poses unique and unprecedented opportunities

and challenges. The unexpectedly rapid fall of global trade barriers and the increasing

fluidity of information have created a cut-throat, competitive business environment. In

reaction, new business platforms and tools have surfaced to deal with the challenges of this

flood of data.

Twenty years ago, few “civilians” had heard of web marketing analytics, supply chains,

or revenue management. But with the rise of Google and Wal-Mart and low fare airlines,

these terms have become an essential part of the conversation. What do they have in

common? All use data in large volumes to drive profitable decisions. And in many of them,

optimization is the “secret sauce.”

Optimization is simply a mathematically sophisticated way to represent a business pro-

cess in software. Built well, an optimization model uses relevant data and business rules to

recommend decisions that generate the best possible result. The three key elements of an

optimization model are

(1) Objectives: These are your business goals. Objectives can include goals such as max-

imizing profit, shrinking the quote-to-cash cycles, reducing shipment costs, or whatever

else you want to minimize or maximize.

(2) Decision Variables: These are geek-speak for decisions in your control. Suppose you

manage a refinery. Is the price of crude oil in your control? No, no matter how much

you might wish it were. How about how much a certain type of crude you refine? Yes.

1This subsection and next are from the booklet titled “Optimization for Dummies” by Sanjay Saigal.

5
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In your production model, the amount of crude oil will be a variable. The forecast oil

price? Simply data (or parameter).

(3) Constraints: Think of constraints as business rules or realities relevant to the opti-

mization model. A factory only has so many workers on a shift. A portfolio manager is

not allowed to invest more than a certain fraction in the tech sector. An arriving aircraft

requires so many minutes for cleaning and refueling. All of these are constraints.

Put these three types of elements together and you get an optimization model. Program

the optimization model into a computer and integrate it with a solver (a king of number

crunching machine) and a user interface, and you have yourself an optimization system. If

fed good data, the system outputs best possible decisions.

1.2 When Should You Optimize?

The first characteristic of an “optimizable” process is rich data. Optimization perfectly

illustrates the adage “garbage in, garbage out.” The more accurately you measure what

you’re doing, the greater your potential to improve.

As an example, delivery services such as FedEx and UPS minimize operation costs in

large part through optimization. As part of their rich data collection, they track turn-by-

turn locations of each vehicle, real-time traffic, operating costs, and continuously refreshed

pick-up and drop-off information.

Another key factor for applying optimization is repeatability. While optimization has

been applied with success to one-off decisions, the U.S. Federal Communications Commis-

sion’s 2008 auction of cellphone frequencies comes to it is more typically used to improve

decisions that occur regularly, even frequently. For example, the National Broadcasting

Company (NBC) uses optimization to sell “up front” television advertising every year, Mar-

riott and Intercontinental use it to optimize their room inventory, and Hewlett Packard uses

it to plan and run manufacturing. These are all repetitive processes where squeezing out

even a 0.1 percent gain in efficiency can translate to millions of dollars.

Finally, optimization is most suited for complex, resource-constrained situations. Ad-

vertising seconds are a television network’s most precious commodity. The same holds true

of rooms in a hotel for a hotel chain or expensive machine and staff time on a factory floor.

While reading this chapter, you might be thinking, “This sounds good, but aren’t my

IT systems already doing all this? Isn’t that what I should expect from my company’s

Customer Relationship Management (CRM) or Enterprise Resource Planning (ERP) or

Business Process Management (BPM) system?” No. Not really.
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Most business IT systems — such as CRM and ERP — are essentially data repositories

with a light sprinkling of rule-based automation. For example, the Salesforce Automation

capability in your CRM may assign new leads to salespersons. That’s decision-making of a

sort. But such assignment rules have to be defined up front, such as: “Calls from Canada

are routed to Tracy.” The CRM can’t tell you which salesperson should be assigned the

lead to maximize profitability; an optimization-based system can.

Typically, the most challenging part of mathematical modeling in OR (especially for a

Linear Program (LP)) is defining decision variables.

? What do you understand from the term Linear Program?

Constraints and objective function must be linear functions of decision variables & deci-

sion variables must be continuous variables.

? What is a linear function?

A linear function is a polynomial function of degree zero or one. e.g., f(y1, y2, y3) =

3y1 + 5y2 + 6, f(x1, x2) = 3x1 + 5x2, f(x1) = 5 etc.

? What is a continuous variable?

A variable in real space with no imposition of additional constraints (except possible

upper and lower bounds). e.g., x1 ≥ 0,−3 ≤ x2 ≤ 5 etc.
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1.3 LP Models

Example 1.1

The Metalco Company desires to blend 40 lbs of a new alloy (ALLOYA) from several

available alloys having the following properties:

Alloys

Property 1 2 3 4 5

Percentage of tin 60 25 45 20 50

Percentage of zinc 10 15 45 50 40

Percentage of lead 30 60 10 30 10

Cost ($/lb) 22 20 25 24 27

Note that the new blend might consist of a single type or multiple types of alloy. The

objective is to determine the proportions of these alloys that should be blended to produce

the new alloy at a minimum cost. Formulate a linear programming model for this problem.

Suppose ALLOYA should contain at least 35 percent tin, 30 percent zinc, and 20 percent

lead. How would you update your linear programming model?

Decision variables:

xi: Amount of alloy i to be used in new alloy, i = 1, 2, 3, 4, 5

Model:

min z = 22x1 + 20x2 + 25x3 + 24x4 + 27x5

s.t. .60x1 + .25x2 + .45x3 + .20x4 + .50x5 ≥ .35× 40

.10x1 + .15x2 + .45x3 + .50x4 + .40x5 ≥ .30× 40

.30x1 + .60x2 + .10x3 + .30x4 + .10x5 ≥ .20× 40

x1 + x2 + x3 + x4 + x5 = 40

x1, x2, x3, x4, x5 ≥ 0

Suppose ALLOYA desires to blend at least 40 lbs (instead of precisely 40 lbs). How would

you update your linear programming model?
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Example 1.2 Coalco produces coal at three mines and ships it to four customers. The

cost per ton of producing coal, the ash and sulfur content (per ton) of coal, and production

capacity (in tons) for each mine are given in the first table below. The minimum amount

of coal demanded by each customer are given in the second table.

The cost (in dollars) of shipping a ton of coal from a mine to each customer is given

in the third table below. It is required that the total amount of coal shipped contain at

most 5% ash and at most 4% sulfur. Formulate an LP that minimizes the cost of meeting

customer demand.

Mine Prod. Cost ($) Capacity Ash Content (tons) Sulfur Content (tons)

1 50 120 .08 .05

2 55 100 .06 .04

3 62 140 .04 .03

Customer 1 Customer 2 Customer 3 Customer 4

80 70 60 40

Mine Customer 1 Customer 2 Customer 3 Customer 4

1 4 6 8 12

2 9 6 7 11

3 8 12 3 5

If, upon departure from the third mine, the company cheats by including sand into

coal and doubling the weight of all trucks to all customers, how would you update your

formulation? Assume the customers won’t notice so that would be OK to satisfy the demand,

however, that should inevitably affect ash and sulfur percentages.
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Example 1.3 The Fagersta Steelworks currently is working two mines to obtain its iron

ore. This iron ore is shipped to either of two storage facilities. When needed, it then

is shipped on to the company’s steel plant. The diagram below depicts this distribution

network, where M1 and M2 are the two mines, S1 and S2 are the two storage facilities, and

P is the steel plant. The diagram also shows the monthly amounts produced at the mines

and needed at the plant, as well as the shipping cost and the maximum amount that can

be shipped per month through each shipping lane. Management now wants to determine

the most economical plan for shipping the iron ore from the mines through the distribution

network to the steel plant. Formulate a linear programming model for this problem.

M1 S1

M2 S2

P

40 tons
produced

60 tons
produced

$800/to
n

70 tons m
ax.

$400/ton70 tons max.

$1
,6

00
/to

n

50
 to

ns
 m

ax
.

$1,100/ton

50 tons max.

$2,000/ton

30 tons max.

$1,700/ton

30 tons m
ax.

100 tons
needed

If the production in M1 increases to 50 tons and S2 demands 10 tons, an arc from S1 to S2

(capacity 20 tons, cost $1000/ton), from M1 to M2 (capacity 20 tons, cost $400/ton) and

from P to M2 (capacity 10 tons, cost $100/ton) are added, how can you formulate an LP?



IE201 @ ÖzÜ / Fall 2018–2019 Dr. Erhun Kundakcıoğlu
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Example 1.4 The MJK Manufacturing Company must produce two products in sufficient quan-

tity to meet contracted sales in each of the next three months. The two products share the same

production facilities, and each unit of both products requires the same amount of production capac-

ity. The available production and storage facilities are changing month by month, so the production

capacities, unit production costs, and unit storage costs vary by month. Therefore, it may be worth-

while to overproduce one or both products in some months and store them until needed.

For each of the three months, the second column of the following table gives the maximum

number of units of the two products combined that can be produced on Regular Time (RT) and on

Overtime (OT). For each of the two products, the subsequent columns give (1) the number of units

needed for the contracted sales, (2) the cost (in thousands of dollars) per unit produced on Regular

Time, (3) the cost (in thousands of dollars) per unit produced on Overtime, and (4) the cost (in

thousands of dollars) of storing each extra unit that is held over into the next month. In each case,

the numbers for the two products are separated by a slash /, with the number for Product 1 on the

left and the number for Product 2 on the right.

The production manager wants a schedule developed for the number of units of each of the two

products to be produced on Regular Time and (if Regular Time production capacity is used up)

on Overtime in each of the three months. The objective is to minimize the total of the production

and storage costs while meeting the contracted sales for each month. There is no initial inventory,

and no final inventory is desired after the three months.

Formulate the problem as a linear program.
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Decision variables:

PRTij : Product j produced at month i in regular time (i = 1, 2, 3, j = 1, 2)

POTij : Product j produced at month i in over time (i = 1, 2, 3, j = 1, 2)

Iij : Inventory of product j after month i (i = 1, 2, 3, j = 1, 2)

Model:

minPRT11 × 15 + PRT12 × 16 + PRT21 × 17 + PRT22 × 15 + PRT31 × 19 + PRT32 ×
17 +POT11 × 18 +POT12 × 20 +POT21 × 20 +POT22 × 18 +POT31 × 22 +POT32 × 22 +

I11 × 1 + I12 × 2 + I21 × 2 + I22 × 1

subject to

PRT31 + POT31 + I21 = 4

PRT32 + POT32 + I22 = 4

I11 = PRT11 + POT11 − 5

I12 = PRT12 + POT12 − 3

I21 = PRT21 + POT21 + I11 − 3

I22 = PRT22 + POT22 + I12 − 5

PRT11 + PRT12 ≤ 10

POT11 + POT12 ≤ 3

PRT21 + PRT22 ≤ 8

POT21 + POT22 ≤ 2

PRT31 + PRT32 ≤ 10

POT31 + POT32 ≤ 3

PRTij , POTij ≥ 0 (i, j = 1, 2)

Iij ≥ 0 (i = 1, 2, 3, j = 1, 2)
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Example 1.5 (Shipbuilding Company) A shipbuilding company is planning its workforce

and inventory over the upcoming summer. The company can produce in a month and satisfy

the same month’s demand. It is expected that there will be 400 workers on payroll and no

inventory in the beginning. Building a ship requires 275 workers. Monthly salary for each

worker is 2,000 TL. Cost of hiring and firing a worker are 400 TL and 1,000 TL, respectively.

Inventory cost per ship per month is 5,000 TL. Expected demands for June, July and August

are 1, 4, and 2 and the demand must definitely be satisfied with no delays. Production costs

in these three months are 20,000 TL, 40,000 TL and 30,000 TL, respectively. Model the

problem to minimize the cost.
Solution

Decision Variables:

Wt: Number of workers in month t, t = 0, 1, 2, 3, t = 1 implies June...

Pt: Number of ships produced in month t, t = 1, 2, 3.

It: Number of ships on inventory at the end of month t, t = 0, 1, 2, 3.

Ht: Number of workers hired at tth month, t = 1, 2, 3.

Ft: Number of workers fired at tth month, t = 1, 2, 3.

Objective Function:

min 2, 000
∑3

t=1Wt+20, 000P1+40, 000P2+30, 000P3+400
∑3

t=1Ht+1, 000
∑3

t=1 Ft+

5, 000
∑3

t=1 It

Constraints:

Wt ≥ 275Pt, t = 1, 2, 3

Wt−1 +Ht − Ft = Wt, t = 1, 2, 3

W0 = 400

It−1 + Pt −Dt = It, t = 1, 2, 3

I0 = 0 (that makes the nonnegativity of I0 redundant)

Wt, Pt, It, Ht, Ft ≥ 0, t = 1, 2, 3

Note: Dt is a parameter in this problem, where D1 = 2, D2 = 4, D3 = 1.
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Example 1.6 (Shipbuilding Company with Backordering) A shipbuilding company is

planning its workforce and inventory over the upcoming summer. The company can produce

in a month and satisfy the same month’s demand. It is expected that there will be 400

workers on payroll and no inventory in the beginning. Building a ship requires 275 workers.

Monthly salary for each worker is 2,000 TL. Cost of hiring and firing a worker are 400 TL

and 1,000 TL, respectively. Inventory cost and backordering cost per ship per month are

5,000 and 40,000 TL. Expected demands for June, July and August are 1, 4, and 2 and

production costs in these months 20,000 TL, 40,000 TL and 30,000 TL, respectively. Model

the problem to minimize the cost.

Solution

Decision Variables:

Wt: Number of workers in month t, t = 0, 1, 2, 3, t = 1 implies June...

Pt: Number of ships produced in month t, t = 1, 2, 3.

Bt: Number of ships backordered in month t, t = 0, 1, 2, 3.

It: Number of ships on inventory at the end of month t, t = 0, 1, 2, 3.

Ht: Number of workers hired at tth month, t = 1, 2, 3.

Ft: Number of workers fired at tth month, t = 1, 2, 3.

Objective Function:

min 2, 000
∑3

t=1Wt+20, 000P1+40, 000P2+30, 000P3+400
∑3

t=1Ht+1, 000
∑3

t=1 Ft+

40, 000
∑3

t=1Bt + 5, 000
∑3

t=1 It

Constraints:

Wt ≥ 275Pt, t = 1, 2, 3

Wt−1 +Ht − Ft = Wt, t = 1, 2, 3

W0 = 400

It−1 −Bt−1 + Pt −Dt = It −Bt, t = 1, 2, 3

I0 = 0, B0 = 0 (that makes the nonnegativity of I0 and B0 redundant)

Wt, Pt, Bt, It, Ht, Ft ≥ 0, t = 1, 2, 3

? If the company owed 10,000 TL independent from hiring / firing / production etc,

would you change your answer? No, that would have only offset the objective function.

? If the costs (objective function coefficients) were 20, 200, 400, 300, 4, 10, 400, 50TL,

respectively, would you change your answer? No, that would have only scaled the objective

function.

? ? ? Suppose the demand for summer has to be met at the end of August (although

there might be backorders in June or July). How would you update your formulation? Add

constraint B3 = 0 only.
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NOTES

1. A feasible solution satisfies “all” constraints.

2. An infeasible solution violates “at least one” constraint.

3. An optimal solution is a feasible solution that provides “the most favorable” objective

function value. (The largest for maximization problems and the smallest for minimization

problems)

4. A problem might have multiple optimal solutions.

5. Best corner point feasible (CPF) solution must be an optimal solution.

6. Constraints are typically categorized as functional constraints and nonnegativity con-

straints.

7. A problem might have no optimal solution in the following 2 cases:

[7.1] Infeasibility.

[7.2] Unboundedness.

8. From now on, instead of labeling the objective function and constraints explicitly, we will

denote any optimization problem as follows: max /min [objective function]

s.t. [constraints]

where s.t. stands for subject to.

9. Never use strict inequalities in an LP formulation. Only ≤ and ≥ signs have to be used.

10. In the world of OR, we start with LP, but we use IP, NLP, MINLP, QP, SDP, BLP

exclusively.

1.4 Exercises

(1) How many feasible solutions can an LP problem have? 0, 1, 2, infinitely many?

(2) How many decision variables are used in Example 1.3? Is it possible to formulate the

same question with a different number of decision variables?

(3) How many functional constraints and decision variables are there in Example 1.6?

(4) Find two feasible and two infeasible solutions for the problem in Example 1.3.

(5) Try and solve Reclaiming Solid Wastes example in Section 3.4 of your textbook on

your own. If you cannot, make sure that you read and understand the solution in the

book.

(6) A company produces two different products by mixing two different raw materials. Each

kg of product 1 can be sold for 10 TL and each kg of product 2 can be sold for 8 TL.

The processing cost per kg of raw material is 2 TL. Raw material 1 costs 1 TL/kg and

raw material 2 costs 1.5 TL/kg. The demand for product 1 is 200 kg and demand for
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product 2 is 400 kg. Due to the agreements with the suppliers you need to purchase

150 kg of each type of raw material. The sulfur content of raw material 1 is 3% and

raw material 2 is 2%. It is required that the sulfur content of product 1 is at most 2.2%

sulfur and the sulfur content of product 2 is at most 2.5%. The usage of any type of raw

material cannot exceed 75% of total usage. Formulate a linear programming problem to

minimize the total cost. Formulate another linear programming problem to maximize

the total profit.

(7) XComputers makes quarterly decisions about their product mix. They produce note-

book computers, desktop computers and tablet. There are a number of limits on what

XComputers can produce. The major constraints are as follows:

• Each computer (notebook, desktop or tablet) requires a Processing Chip. Due to

tightness in the market, our supplier has allocated a total of 15,000 chips to us.

• Each computer requires memory. Memory comes in 1GB chip sets. A notebook

computer has 2GB, a desktop computer has 4GB, and a tablet has 1GB memory

installed. We received a great deal on chip sets, so have a stock of 25,000 chip sets

(1GB each) to use over the next quarter.

• Each computer requires assembly time. Due to tight tolerances, a notebook com-

puter takes 5 minutes to assemble while assembling a desktop takes 4 minutes and

a tablet 3 minutes. There are 25,000 minutes of assembly time available in the

next quarter.

• Given current market conditions, material cost, and our production system, each

notebook computer produced generates $600 profit, each desktop produces $700

profit and each tablet produces $500 profit.

Formulate a Linear Programming model for this problem to maximize the profit for

XComputers.

(8) A gas company owns a pipeline network, sections of which are used to pump natural

gas from its main field to its distribution center. The network is shown below, where

the direction of the arrows indicates the only direction in which the gas can be pumped.

The pipeline links of the system are numbered one through six, and the intermediate

nodes are large pumping stations.The gas company wants to find those usage rates that minimize total cost of transportation.

At the present time, the company nets 1200 mcf (million cubic feet) of gas per month
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from its main field and must transport that entire amount to the distribution center.

The following are the maximum usage rates and costs associated with each link:

1 2 3 4 5 6

Maximum usage: mcf/month 500 900 700 400 600 1000

Tariff: $/mcf 20 25 10 15 20 40

The gas company wants to find those usage rates that minimize total cost of transporta-

tion. Formulate the problem as a linear program.

(9) The Primo Insurance Company is introducing two new product lines: special risk in-

surance and mortgages. The expected profit is $5 per unit on special risk insurance and

$2 per unit on mortgages. Management wishes to establish sales quotas for the new

product lines to maximize total expected profit. The work requirements are as follows:

Formulate a linear programming model for this problem.

Work-Hours per Unit

Department Special Risk Mortgage Work Hours Available

Underwriting 3 2 2400

Administration 0 1 800

Claims 2 0 1200

(10) Weenies and Buns is a food processing plant which manufactures hot dogs and hot dog

buns. They grind their own flour for the hot dog buns at a maximum rate of 200 pounds

per week. Each hot dog bun requires 0.1 pound of flour. They currently have a contract

with Pigland, Inc., which specifies that a delivery of 800 pounds of pork product is

delivered every Monday. Each hot dog requires 1
4 pound of pork product. All the other

ingredients in the hot dogs and hot dog buns are in plentiful supply. Finally, the labor

force at Weenies and Buns consists of 5 employees working full time (40 hours per week

each). Each hot dog requires 3 minutes of labor, and each hot dog bun requires 2

minutes of labor. Each hot dog yields a profit of $0.20, and each bun yields a profit of

$0.10.

Weenies and Buns would like to know how many hot dogs and how many hot dog buns

they should produce each week so as to achieve the highest possible profit. Formulate

a linear programming model for this problem.

(11) Web Mercantile sells many household products through an on-line catalog. The company

needs substantial warehouse space for storing its goods. Plans are being made for leasing

warehouse storage space over the next 5 months. Just how much space will be required

in each of these months is known. However, since these space requirements are quite
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different, it may be most economical to lease only the amount needed each month on

a month-by-month basis. On the other hand, the additional cost for leasing space

for additional months is much less than leasing for one month only, so it may be less

expensive to lease the maximum amount needed for the entire 5 months. Another option

is the intermediate approach of changing the total amount of space leased (by adding

a new lease and/or having an old lease expire) at least once but not every month. The

space requirement and the leasing costs for the various leasing periods are as follows:

Month Required Space

1 30,000 sq. ft.

2 20,000 sq. ft.

3 40,000 sq. ft.

4 10,000 sq. ft.

5 50,000 sq. ft.

Leasing Period Cost per sq. ft.

1 month $65

2 months $100

3 months $135

4 months $160

5 months $190

The objective is to minimize the total leasing cost for meeting the space requirements.

Formulate a linear programming model for this problem.

(12) Consider a restaurant that is open seven days a week. Based on past experience, the

minimum number of workers needed on a particular day is given as follows:

Day Mon Tue Wed Thu Fri Sat Sun

Number of workers needed 14 13 15 16 19 18 11

Every worker works five consecutive days, and then takes two days off, repeating this

pattern indefinitely. Formulate the linear programing model that would minimize the

number of workers that work for the restaurant.

(13) Suppose an investor has $100 on Monday. Every day of the week (Monday through

Friday), the investor has the following investment opportunity available: if s/he invests

x dollars on a day and matches that initial investment (invests the same amount) the

next day, then s/he will receive a total return of 3x dollars on the third day. That is,

with a total investment of 2x dollars over two days, the investor receives 3x dollars on

the third day. The investor wishes to determine an investment schedule that maximizes

his total cash by the end of Saturday. Note that the investor cannot invest on Saturday
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but s/he can receive a return on Saturday. Formulate a linear programming model to

solve this problem.

1.5 Further Reading and Exercises

The reader is refereed to Chapters 2 and 3 in the textbook, Introduction to Operations

Research by Hillier and Lieberman.
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Chapter 2

Solving a Linear Program

(Weeks 4-7)

Important Note: Throughout this course, we only work with continuous variables. In

most of the questions, these variables might represent countable entities (such as number

of workers, items). However, feasible and optimal answers might be fractional (e.g., 2.5

products, 12.8 workers). This is to be expected as we do not impose integer requirements.

Forcing some variables to be integers would transform an LP (linear program) to an MIP

(mixed integer program), which is out of the scope of this course. Thus, instead of focusing

on the real life implications, just try and get used to the fact that all variables in this course

are real numbers, not necessarily integers. The solution may coincidentally be integers,

which is great, but if not, do not worry. We will be happily producing 33.4 items in a month

and carry an inventory of 2.91 items, where 256.34 workers are present in a facility.

2.1 Graphical Method

When there are a tractable number of decision variables, the problem can be solved using

the graphical method. Consider the following example.

Example 2.1

The WYNDOR GLASS CO. produces high-quality glass products, including windows

and glass doors. It has three plants. Aluminum frames and hardware are made in Plant 1,

wood frames are made in Plant 2, and Plant 3 produces the glass and assembles the prod-

ucts. Because of declining earnings, top management has decided to revamp the company’s

product line. Unprofitable products are being discontinued, releasing production capacity

to launch two new products having large sales potential:

Product 1: An 8-foot glass door with aluminum framing.

Product 2: A 4 x 6 foot double-hung wood-framed window.

Product 1 requires some of the production capacity in Plants 1 and 3, but none in Plant

2. Product 2 needs only Plants 2 and 3. The marketing division has concluded that the

21
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company could sell as much of either product as could be produced by these plants. However,

because both products would be competing for the same production capacity in Plant 3, it

is not clear which mix of the two products would be most profitable. Therefore, an OR team

has been formed to study this question. The OR team began by having discussions with

upper management to identify management’s objectives for the study. These discussions led

to developing the following definition of the problem:

Determine what the production rates should be for the two products in order to maximize

their total profit, subject to the restrictions imposed by the limited production capacities

available in the three plants. (Each product will be produced in batches of 20, so the

production rate is defined as the number of batches produced per week.) Any combination

of production rates that satisfies these restrictions is permitted, including producing none

of one product and as much as possible of the other.

The OR team also identified the data that needed to be gathered:

• Number of hours of production time available per week in each plant for these new

products. (Most of the time in these plants already is committed to current products,

so the available capacity for the new products is quite limited.)

• Number of hours of production time used in each plant for each batch produced of each

new product.

• Profit per batch produced of each new product. (Profit per batch produced was cho-

sen as an appropriate measure after the team concluded that the incremental profit

from each additional batch produced would be roughly constant regardless of the total

number of batches produced. Because no substantial costs will be incurred to initiate

the production and marketing of these new products, the total profit from each one is

approximately this profit per batch produced times the number of batches produced.)

The OR team immediately recognized that this was a linear programming problem of the

classic product mix type, and the team next undertook the formulation of the corresponding

mathematical model.

Required time for two types product to be produced and available time for plants are

given in Table 2. Net profits of product 1 and product 2 are $3,000 and $5,000, respectively.

How would you formulate this problem so as to maximize the profit.

Solution

Decision Variables:

x1: Batches of Product 1 produced.
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Plant Product 1 Product 2 Production Time Available per week

1 1 0 4

2 0 2 12

3 3 2 18

x2: Batches of Product 2 produced.

Objective Function:

max 3, 000x1 + 5, 000x2

Constraints:

x1 ≤ 4

2x2 ≤ 12

3x1+ 2x2 ≤ 18

x1, x2 ≥ 0

? Would we obtain the same solution if we maximized 3x1 + 5x2 instead?

YES! That’s what we call scaling the objective function.

? Would we obtain the same solution if our constraints were the following?

x1 ≤ 80

2x2 ≤ 240

3x1 + 2x2 ≤ 360

x1, x2 ≥ 0

NO! It’s not the same solution but a very similar solution. That’s a different way of

scaling. We scaled the variables - worked with units instead of batches.

Anyways, we will use the following formulation:

max 3x1+ 5x2

s.t. x1 ≤ 4

2x2 ≤ 12

3x1+ 2x2 ≤ 18

x1, x2 ≥ 0
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24 Solving a Linear Program

(6, 0)(4, 0)

(0, 6)

(0, 9)

(2, 6)

(4, 3)

(4, 6)

(0, 0)

Feasible
region

x1 ! 0

3x1 " 2x2 ! 18

x2 ! 0

x1 ! 4

2x2 ! 12

Maximize Z ! 3x1 " 5x2,
subject to

x1 #   4
# 12
# 18

2x2

2x23x1 "
and

x1 $ 0, x2 $ 0 

x2

x1

Make sure that you understand how we optimize the objective function using the feasible

region in 2D drawing (why 2D?). What is the range for optimality for the net profits of

first and second product? In other words, provide a range for each coefficient so that the

current optimal solution stays optimal.

Pop Question: Can you write 5 inequality constraints with 2 variables so that the

feasible region is a

• point?

• line segment?

• line?

• triangle?

• rectangle?

• pentagon?

• hexagon?

If you can, give examples for each.

2.2 Algebraic Simplex Method

FROM NOW ON, ALL VARIABLES ARE SUPPOSED TO BE NONNEGATIVE. YOU

CANNOT TREAT A NONPOSITIVE OR UNRESTRICTED VARIABLE THE SAME



IE201 @ ÖzÜ / Fall 2018–2019 Dr. Erhun Kundakcıoğlu
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WAY IN SIMPLEX METHOD. How to handle variables that are not nonnegative are dis-

cussed later in Section 2.4.4.

Example 2.2

max 3x1+ 5x2

s.t. x1 ≤ 4

2x2 ≤ 12

3x1+ 2x2 ≤ 18

x1, x2 ≥ 0

Don’t worry about the fact that second constraint can be simplified as x2 ≤ 6.

2.2.1 Augmented Form of The Model

We need the model to be in augmented form (a.k.a. standard form) for the algebraic method

to work. The augmented form of the above formulation is as follows:

max 3x1+ 5x2

s.t. x1 + x3 = 4

2x2 + x4 = 12

3x1+ 2x2 + x5 = 18

x1, x2, x3, x4, x5 ≥ 0

? Pay attention to the fact that we currently have a feasible solution. It is called initial

basic feasible solution (BFS).

? Current solution is x1 = 0, x2 = 0, x3 = 4, x4 = 12, x5 = 18. From now on, always

think in terms of augmented form.

??? We will have as many as original number of variables + number of functional con-

straints. Because each functional constraint will introduce one slack variable (if it is a ≤
constraint). We will see other forms later.

? Is our current solution optimal? Why/why not?

2.2.2 Flow of the Algebraic Simplex Method

max z− 3x1− 5x2+ 0x3+ 0x4+ 0x5 = 0

s.t. x1 + x3 = 4

2x2 + x4 = 12

3x1+ 2x2 + x5 = 18
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x1, x2, x3, x4, x5 ≥ 0

? Note that we can omit nonnegativity constraints as all variables are always supposed

to be nonnegative for this procedure anyways.

Solution

Current solution is

x1 = 0, x2 = 0, x3 = 4, x4 = 12, x5 = 18

which is not optimal.

See the dynamics at this point. Which variable is willing to increase until which variable

hits zero?

Increase x2. That is x2 enters to the list of nonzero variables, x4 leaves the list of

nonzero variables (a.k.a. BASIS).

So x3, x4, x5 was in the BASIS. But the new BASIS is x2, x3, x5.

max z − 3x1 + 0 x2+ 0x3+
5

2
x4+ 0x5 = 30

s.t. x1 + x3 = 4

x2 +
1

2
x4 = 6

3x1 − x4+ x5 = 6

Current solution is

x1 = 0, x2 = 6, x3 = 4, x4 = 0, x5 = 6

which is not optimal. Why?

? NOTE: Variables in the BASIS are called basic variables, and those not in the basis

are called nonbasic variables.

? How can you tell if a variable is nonbasic?

? How can you tell the values of basic variables?

Increase x1. x1 enters the BASIS, x5 leaves the BASIS.

max z+ 0x1+ 0x2+ 0x3+
3

2
x4+ x5 = 36

s.t. + x3+
1

3
x4−

1

3
x5 = 2

x2 +
1

2
x4 = 6

x1 − 1

3
x4+

1

3
x5 = 2
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Current solution is

x1 = 2, x2 = 6, x3 = 2, x4 = 0, x5 = 0, z = 36

which is optimal. Why?

This optimality is denoted as:

x∗1 = 2, x∗2 = 6, x∗3 = 2, x∗4 = 0, x∗5 = 0, z∗ = 36

OPTIMAL BASIS is x1, x2, x3.



IE201 @ ÖzÜ / Fall 2018–2019 Dr. Erhun Kundakcıoğlu
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??? FLOW OF SIMPLEX METHOD ???

(1) Find the entering variable (the one with most negative reduced cost, i.e., row zero

coefficient)

(2) Find the pivot number that provides minimum ratio of right hand side divided by

constraint coefficient

(3) Identify the leaving variable

(4) Make the pivot number one, by row multiplication

(5) Try to make constraint coefficients zero in other rows for the entering variable in an

effort to produce a new identity matrix

(6) You will notice the leaving variable’s identity matrix column disappears and right hand

side is always nonnegative (if not, minimum ratio test was not done correctly)

(7) Make the reduced cost of entering variable zero through basic row operations (other

basic variables’ reduced costs has to remain zero for the obvious reason)

(8) You will notice the objective has improved. Double check if you have a new identity

matrix under the new basis, and if reduced cost of these basic variables are all zero.
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Example 2.3 Solve the following problem in class.

min −2x1 + 6x2 − 7x3

s.t. x1 + x2 + 2x3 ≤ 1

x1 + 4x3 ≤ 2

x1, x2, x3 ≥ 0

Solution

max −z −2x1 +6x2 −7x3 +0x4 +0x5 = 0

s.t. x1 +x2 +2x3 +x4 = 1

x1 +4x3 +x5 = 2

x1, x2, x3 are nonbasic variables.

x4 = 1, x5 = 2, z = 0

x3 enters, x5 leaves.

max −z −1

4
x1 +6x2 +

7

4
x5 =

7

2

s.t.
1

2
x1 +x2 +x4 −

1

2
x5 = 0

1

4
x1 +x3 +

1

4
x5 =

1

2

x1, x2, x5 are nonbasic variables.

x4 = 0, x3 = 1
2 , z = − 7

2

x1 enters, x4 leaves.

max −z +
13

2
x2 +

1

2
x4 +

3

2
x5 =

7

2
s.t. x1 +2x2 +2x4 −x5 = 0

−1

2
x2 +x3 −

1

2
x4 +

1

2
x5 =

1

2

x4, x2, x5 are nonbasic variables.

x1 = 0, x3 = 1
2 , z = − 7

2

Optimal solution is found! x∗4, x
∗
2, x
∗
5 = 0, x∗1 = 0, x∗3 = 1

2 , z
∗ = − 7

2

??? Nonbasic variables are always zero. However, basic variables are not necessarily

nonzero! Above example illustrates that case, also known as degeneracy.
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NOTES

1. Each variable is designated as basic or nonbasic (there are a total of n variables).

2. Number of basic variables always equals the number of constraints (there are m BV’s).

3. Nonbasic variables are always set to zero (there are n−m NBV’s).

4. System can be solved for basic variables using m equations and m unknowns. Then we

end up with a Basic Solution (a.k.a. corner point (CP) solution).

5. If basic variables are nonnegative then we have a Basic Feasible Solution (BFS).

6. In Simplex Method, we are exploring BFS’s (a.k.a. corner point feasible (CPF) solutions).

QUESTIONS

(1) In Example 2.2 in your notes, enumerate all basic solutions. Classify these solutions as

feasible or infeasible.

(2) In Example 2.3 in your notes, enumerate all basic solutions. Classify these solutions as

feasible or infeasible.

(3) Consider the following problem.

max z = 3x1 + 2x2

s.t. 2x1 + x2 ≤ 6

x1 + 2x2 ≤ 6

x1, x2 ≥ 0

(a) Use the graphical method to solve this problem. Circle all the corner points on the

graph.

(b) For each CPF solution, identify the pair of constraint boundary equations it satisfies.

(c) For each CPF solution, identify its adjacent CPF solutions.

(d) Calculate z for each CPF solution. Use this information to identify an optimal

solution.

(e) Describe graphically what the simplex method does step by step to solve the problem.

x∗1 = 2, x∗2 = 2, z∗ = 10

(4) Work through the simplex method (in algebraic form) step by step to solve the following

problem.
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min z = −x1 − 2x2 − 4x3

s.t. 3x1 + x2 + 5x3 ≤ 10

x1 + 4x2 + x3 ≤ 8

2x1 + 2x3 ≤ 7

x1, x2, x3 ≥ 0

x∗1 = 0, x∗2 = 30/19, x∗3 = 32/19, z∗ = −188/19
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2.3 Simplex Method in Tabular Form / Tableau Format

Example 2.4 Wyndor Glass Co. Problem

max z −3x1 −5x2 +0x3 +0x4 +0x5 = 0

s.t. x1 +x3 = 4

2x2 +x4 = 12

3x1 +2x2 +x5 = 18

x1 , x2 ≥ 0

Solution

x3, x4, x5 are basic variables.
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Iteration 0

z x1 x2 x3 x4 x5 RHS

1 -3 -5 0 0 0 0

0 1 0 1 0 0 4

0 0 2 0 1 0 12

0 3 2 0 0 1 18

Iteration 1

z x1 x2 x3 x4 x5 RHS

1 -3 0 0 5
2 0 30

0 1 0 1 0 0 4

0 0 1 0 1
2 0 6

0 3 0 0 -1 1 6

Iteration 2

z x1 x2 x3 x4 x5 RHS

1 0 0 0 3
2 1 36

0 0 0 1 1
3 − 1

3 2

0 0 1 0 1
2 0 6

0 1 0 0 − 1
3

1
3 2

Note the changes (especially in the z column in case of a minimization problem.

Before we proceed, let’s make sure that you can solve relatively easy questions.

Example 2.5

min 2x2 − 6x1

s.t. 2x1 − x2 ≤ 2

x1 ≤ 4

x1, x2 ≥ 0
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2.4 Ill-Posed Cases

Note that all ties are broken arbitrarily in simplex method. However, there are cases that

might riddle you with exceptions or abrupt zeros. Below we summarize all possible ill-posed

scenarios that you might come across.

2.4.1 Alternative Optima

If we have alternative solutions that give the same optimal objective function value, then

there is alternative optima.

Example 2.6

max 3x1 + 5x2 + 4x3

s.t. x1 ≤ 5

2x2 + 2x3 ≤ 12

3x1 + 2x2 + x3 ≤ 18

x1, x2, x3 ≥ 0
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Iteration 0:

z x1 x2 x3 x4 x5 x6 RHS

1 -3 -5 -4 0 0 0 0

0 1 0 0 1 0 0 5

0 0 2 2 0 1 0 12

0 3 2 1 0 0 1 18

Iteration 1:

z x1 x2 x3 x4 x5 x6 RHS

1 -3 0 1 0 5
2 0 30

0 1 0 0 1 0 0 5

0 0 1 1 0 1
2 0 6

0 3 0 -1 0 -1 1 6

Iteration 2:

z x1 x2 x3 x4 x5 x6 RHS

1 0 0 0 0 3
2 1 36

0 0 0 1
3 1 1

3
−1
3 3

0 0 1 1 0 1
2 0 6

0 1 0 −1
3 0 −1

3
1
3 2

This final tableau is optimal. However, x3 can enter the basis improving the objective

with a rate of zero, that is staying at the same objective function value.

z x1 x2 x3 x4 x5 x6 RHS

1 0 0 0 0 3
2 1 36

0 0 −1
3 0 1 1

6
−1
3 1

0 0 1 1 0 1
2 0 6

0 1 1
3 0 0 −1

6
1
3 4

??? When the reduced costs of a nonbasic variable is zero in the final tableau, we can

say that there is alternative optima.

? Reduced cost is row zero values in the tableau. That is the row that corresponds to
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the objective function after row operations in each iteration.

2.4.2 Degeneracy

Example 2.7 The following tableau presents a case of degeneracy:

z x1 x2 x3 x4 x5 x6 RHS

1 0 -3 0 0 3
2 1 23

0 0 1
3 0 1 1

6
−1
3 0

0 0 1 1 0 1
2 0 3

0 1 1
3 0 0 −1

6
1
3 2

? If a basic variable equals zero, then there is a degenerate solution.

? Question: Would this still be degenerate if the coefficient of x2 in row zero was positive?

Or if constraint 1 coefficient of x2 was negative?

Answer: Looking at the definition, yes! Think about how you would provide that alter-

native representation of the same solution...

2.4.3 Unboundedness

Example 2.8

max 3x1 + 5x2 + 3x3

s.t. x1 − 2x3 ≤ 4

2x2 − x3 ≤ 12

3x1 + 2x2 − x3 ≤ 18

x1, x2, x3 ≥ 0

Final tableau:

z x1 x2 x3 x4 x5 x6 RHS

1 0 0 −11
2 0 3

2 1 36

0 0 0 -2 1 1
3

−1
3 2

0 0 1 −1
2 0 1

2 0 6

0 1 0 0 0 −1
3

1
3 2

x3 enters but there is no leaving variable. Unbounded problem!
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? The problem is unbounded, if for a variable with negative reduced cost (not necessarily

the one with most negative reduced cost), ratio test does not provide a value - that is,

constraint coefficients are nonpositive for that variable.

? Question: Can you provide an answer whose objective function value is 600? Or 6000?

2.4.4 Dealing with Unrestricted or Nonpositive Variables

How do we handle variables that are not nonnegative?

Suppose we have the following problem.

max 3x1 + 2x2

s.t. x1 ≤ 4

2x2 ≤ 12

3x1 + 2x2 ≤ 16

x1 ≥ 0

x2 ≤ −10

We already know how to use simplex, and simplex can only solve LP’s with non-

negative variables.

What substitution would you use to make all variables nonnegative?

• x+
2 = −x2. In this case, we would have x+

2 ≥ 0 and another functional constraint

x+
2 ≥ 10.

• x+
2 = −x2 − 10. In this case, we would only have x+

2 ≥ 0, which is better than the

alternative above.

Substitute x+
2 = −x2 − 10, that is x2 = −x+

2 − 10 x+
2 ≥ 0

Note: Original x2 disappears in the updated formulation. If you need to find it, you

need to use x+
2 to compute it using the relationship x2 = −x+

2 − 10.

max 3x1 − 2x+
2 − 20

s.t. x1 ≤ 4

−2x+
2 − 20 ≤ 12

3x1 − 2x+
2 − 20 ≤ 16

x1 ≥ 0

x+
2 ≥ 0
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Suppose we have the following problem.

max 3x1 + 2x2

s.t. x1 ≤ 4

2x2 ≤ 12

3x1 + 2x2 ≤ 16

x1 ≥ 0

x2 urs.

What substitution would you use to make all variables nonnegative?

Substitute x2 = x+
2 − x

−
2 x+

2 , x
−
2 ≥ 0

Note: Original x2 disappears in the updated formulation. If you need to find it, you

need to use x+
2 and x−2 to compute it using the relationship x2 = x+

2 − x
−
2 .

max 3x1 + 2x+
2 − 2x−2

s.t. x1 ≤ 4

2x+
2 − 2x−2 ≤ 12

3x1 + 2x+
2 − 2x−2 ≤ 16

x1, x
+
2 , x

−
2 ≥ 0

Before we proceed, let’s make sure that you can use all techniques you have learned thus

far.

Example 2.9

min 5x1 + 3x2

s.t. x1 ≥ −8

2x1 + 4x2 ≤ 12

x1 urs, x2 ≤ −6

2.5 Finding an Initial Basic Feasible Solution

We have seen how to deal with minimization or maximization problems that have ≤ con-

straints. Note that all these problems initially had nonnegative right hand sides as well.

What we have learned so far will not be useful to solve the problems that utilize either one



IE201 @ ÖzÜ / Fall 2018–2019 Dr. Erhun Kundakcıoğlu
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of the following constraints:

• 4x1 + 2x2 + x3 ≥ 24

• x1 − 2x2 − 5x3 ≤ −24

• 3x1 + x2 + 3x3 = 24 (What’s wrong with assuming x2 is a BV?)

• 2x1 − 3x2 + x3 = −24

First, make sure that you understand why we cannot handle these. In other words, why

is it challenging to find an initial BFS in these cases?

Fortunately, the way we handle such situations is pretty standard. There are two al-

ternative ways that help us solve any of these 4 cases: Big-M method and Two phase

method.

2.5.1 Big-M Method

Example 2.10

max −600x1 − 500x2 − 700x3

s.t. 4x1 + 2x2 + 5x3 ≥ 24

5x1 + 6x2 + 2x3 ≥ 35

3x1 + 3x2 + 4x3 ≥ 30

xi ≥ 0, i = 1, 2, 3

Solution

max −600x1 − 500x2 − 700x3

s.t. 4x1 + 2x2 + 5x3 − x4 = 24

5x1 + 6x2 + 2x3 − x5 = 35

3x1 + 3x2 + 4x3 − x6 = 30

xi ≥ 0, i = 1, 2, . . . , 6

max −600x1 − 500x2 − 700x3−Mx′4 −Mx′5 −Mx′6

s.t. 4x1 + 2x2 + 5x3 − x4+x′4 = 24

5x1 + 6x2 + 2x3 − x5+x′5 = 35

3x1 + 3x2 + 4x3 − x6+x′6 = 30

xi ≥ 0, i = 1, 2, . . . , 6

x′i ≥ 0, i = 4, 5, 6
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What we did is we penalized these artificial variables (x′4, x
′
5, x
′
6) heavily in the objective.

If possible it will find a solution where these artificial variables are zeros. Otherwise, if these

artificial variables are not zero, the objective function value will be a function of M .

z x1 x2 x3 x4 x5 x6 x′4 x′5 x′6 RHS

1 600 500 700 0 0 0 M M M 0

0 4 2 5 -1 0 0 1 0 0 24

0 5 6 2 0 -1 0 0 1 0 35

0 3 3 4 0 0 -1 0 0 1 30

z x1 x2 x3 x4 x5 x6 x′4 x′5 x′6 RHS

1 600− 12M 500− 11M 700− 11M M M M 0 0 0 −89M

0 4 2 5 -1 0 0 1 0 0 24

0 5 6 2 0 -1 0 0 1 0 35

0 3 3 4 0 0 -1 0 0 1 30

Next, you have to use simplex method until all reduced costs are nonnegative.

? Which variable enters first?

ANSWER: x1 because M is a very large number!

??? If the optimal objective function value is a function of M , that shows your problem

does not have a feasible solution! The problem is then infeasible!

Graphical Illustration of the Big-M Method

Consider the Wyndor Glass Co. problem defined in Example 2.1 (formulation in Exam-

ple 2.2). Suppose the third functional constraint becomes an equality constraint. Then the

feasible region becomes the line segment between (2, 6) and (4, 3) as shown in the graph

below.
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If we solve this problem using Big-M method, the objective function for each basic

feasible solution (which are indeed not feasible) are provided in the picture below. Note

that such solutions will always have an undesirable objective function value (less than or

equal to −M). Below is the solution of this problem using Big-M method.
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Example 2.11

max 3x1 + 5x2

s.t. x1 ≤ 4

2x2 ≤ 12

3x1 + 2x2 = 18

xi ≥ 0, i = 1, 2

Solution

max z − 3x1 − 5x2 +Mx5

s.t. x1 + x3 = 4

2x2 + x4 = 12

3x1 + 2x2 + x′5 = 18

xi ≥ 0, i = 1, 2, . . . , 5

Note that x′5 is an artificial variable here. x3 and x4 on the other hand are slack variables

that already help us with the initial BFS.

z x1 x2 x3 x4 x′5 RHS

1 -3 -5 0 0 M 0

0 1 0 1 0 0 4

0 0 2 0 1 0 12

0 3 2 0 0 1 18

z x1 x2 x3 x4 x′5 RHS

1 −3− 3M −5− 2M 0 0 0 −18M

0 1 0 1 0 0 4

0 0 2 0 1 0 12

0 3 2 0 0 1 18

x1 enters, x3 leaves.

z x1 x2 x3 x4 x′5 RHS

1 0 −5− 2M 3M + 3 0 0 −6M + 12

0 1 0 1 0 0 4

0 0 2 0 1 0 12

0 0 2 -3 0 1 6
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x2 enters, x′5 leaves.

z x1 x2 x3 x4 x′5 RHS

1 0 0 −9
2 0 5+2M

2 27

0 1 0 1 0 0 4

0 0 0 3 1 -1 6

0 0 1 −3
2 0 1

2 3

x3 enters, x4 leaves.

z x1 x2 x3 x4 x′5 RHS

1 0 0 0 3
2 M + 1 36

0 1 0 0 − 1
3

1
3 2

0 0 0 1 1
3

−1
3 2

0 0 1 0 1
2 0 6

The optimal solution is x∗1 = 2, x∗2 = 6, x∗3 = 2, x∗4 = 0, x′∗5 = 0, z∗ = 36.

More Examples

Example 2.12 Solve the following problem in class.

max z = 2x1 + 3x2

s.t. x1 + 2x2 ≤ 4

x1 + x2 = 3

x1, x2 ≥ 0

Solution

max z = 2x1 + 3x2 −Mx′4

s.t. x1 + 2x2 + x3 = 4

x1 + x2 + x′4 = 3

x1, x2, x3, x
′
4 ≥ 0

Initial basic feasible solution: (0,0,4,3)

z x1 x2 x3 x′4 RHS

1 -2 -3 0 M 0

0 1 2 1 0 4

0 1 1 0 1 3
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z x1 x2 x3 x′4 RHS

1 −0.5M − 0.5 0 0.5M + 1.5 0 6−M
0 0.5 1 0.5 0 2

0 0.5 0 -0.5 1 1

z x1 x2 x3 x′4 RHS

1 0 0 1 1 +M 7

0 0 1 1 -1 1

0 1 0 -1 2 2

Optimal Solution (x∗1, x
∗
2)=(2,1) and z∗ = 7.
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2.5.2 Two Phase Method

Example 2.13

max z = 2x1 + 3x2 + x3

s.t. x1 + x2 + x3 ≤ 40

2x1 + x2 − x3 ≥ 10

−x2 + x3 ≥ 10

x1, x2, x3 ≥ 0

Solution

max z = 2x1 + 3x2 + x3

s.t. x1 + x2 + x3 + x4 = 40

2x1 + x2 − x3 − x5 = 10

−x2 + x3 − x6 = 10

x1, x2, x3, x4, x5, x6 ≥ 0

PHASE 1

min x′5 + x′6

s.t. x1 + x2 + x3 + x4 = 40

2x1 + x2 − x3 − x5 + x′5 = 10

−x2 + x3 − x6 + x′6 = 10

x1, x2, x3, x4, x5, x
′
5, x6, x

′
6 ≥ 0
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z x1 x2 x3 x4 x5 x6 x′5 x′6 RHS

-1 0 0 0 0 0 0 1 1 0

0 1 1 1 1 0 0 0 0 40

0 2 1 -1 0 -1 0 1 0 10

0 0 -1 1 0 0 -1 0 1 10

z x1 x2 x3 x4 x5 x6 x′5 x′6 RHS

-1 -2 0 0 0 1 1 0 0 -20

0 1 1 1 1 0 0 0 0 40

0 2 1 -1 0 -1 0 1 0 10

0 0 -1 1 0 0 -1 0 1 10

Entering and leaving variables would be x1 and x′5 respectively:

z x1 x2 x3 x4 x5 x6 x′5 x′6 RHS

-1 0 1 -1 0 0 1 1 0 -10

0 0 0.5 1.5 1 0.5 0 -0.5 0 35

0 1 0.5 -0.5 0 -0.5 0 0.5 0 5

0 0 -1 1 0 0 -1 0 1 10

Entering and leaving variables would be x3 and x′6 respectively:

z x1 x2 x3 x4 x5 x6 x′5 x′6 RHS

-1 0 0 0 0 0 0 1 1 0

0 0 2 0 1 0.5 1.5 -0.5 -1.5 20

0 1 0 0 0 -0.5 -0.5 0.5 0.5 10

0 0 -1 1 0 0 -1 0 1 10

The optimal value of the Phase I problem is 0. Therefore, the original problem is feasible,

and a basic feasible solution is x1 = 10, x3 = 10, x4 = 20, x2 = x5 = x6 = 0. Next, we start

Phase II by simply omitting artificial variables x′5 and x′6.

PHASE 2
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The initial tableau is the last Phase I tableau where artificial variables taken away. Also

note that we use the original problem’s objective function row.

z x1 x2 x3 x4 x5 x6 RHS

1 -2 -3 -1 0 0 0 0

0 0 2 0 1 0.5 1.5 20

0 1 0 0 0 -0.5 -0.5 10

0 0 -1 1 0 0 -1 10

Why we did this entire phase I is to obtain this BFS above. Notice that there is identity

matrix structure in the constraints with nonnegative right hand sides. These variables’

reduced costs were supposed to be zero but even though that is not the case above, that is

very easy to obtain using row operations with no drawbacks.

z x1 x2 x3 x4 x5 x6 RHS

1 0 -4 0 0 -1 -2 30

0 0 2 0 1 0.5 1.5 20

0 1 0 0 0 -0.5 -0.5 10

0 0 -1 1 0 0 -1 10

Entering and leaving variables would be x2 and x4 respectively.
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z x1 x2 x3 x4 x5 x6 RHS

1 0 0 0 2 0 1 70

0 0 1 0 0.5 0.25 0.75 10

0 1 0 0 0 -0.5 -0.5 10

0 0 0 1 0.5 0.25 -0.25 20

Thus, the optimal value is z∗ = 70, and the optimal solution is x∗1 = x∗2 = 10, x∗3 =

20, x∗4 = x∗5 = x∗6 = 0.

Example 2.14 Solve the following problem in class.

min z = x1 + x2 + 3x3 + x4

s.t. 2x1 + 3x2 + 6x4 ≥ 14

3x1 + x2 + 2x3 − 7x4 = −11

x1, x2, x3, x4 ≥ 0

Solution

PHASE 1

min x′5 + x′6

s.t. 2x1 + 3x2 + 6x4 − x5 + x′5 = 14

−3x1 − x2 − 2x3 + 7x4 + x′6 = 11

x1, x2, x3, x4, x5, x
′
5, x
′
6 ≥ 0

Why don’t we introduce the artificial variable to the original constraint as is, so that it

reads 3x1 + x2 + 2x3 − 7x4 + x′6 = −11?

z x1 x2 x3 x4 x5 x′5 x′6 RHS

-1 0 0 0 0 0 1 1 0

0 2 3 0 6 -1 1 0 14

0 -3 -1 -2 7 0 0 1 11

z x1 x2 x3 x4 x5 x′5 x′6 RHS

-1 1 -2 2 -13 1 0 0 -25

0 2 3 0 6 -1 1 0 14

0 -3 -1 -2 7 0 0 1 11
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z x1 x2 x3 x4 x5 x′5 x′6 RHS

-1 −32
7

−27
7

−12
7 0 1 0 13

7
−32

7

0 32
7

27
7

12
7 0 -1 1 −6

7
32
7

0 −3
7

−1
7

−2
7 1 0 0 1

7
11
7

z x1 x2 x3 x4 x5 x′5 x′6 RHS

-1 0 0 0 0 0 1 1 0

0 1 27
32

3
8 0 −7

32
7
32

−3
16 1

0 0 7
32

−1
8 1 −3

32
3
32

1
16 2

PHASE 2

z x1 x2 x3 x4 x5 RHS

-1 1 1 3 1 0 0

0 1 27
32

3
8 0 −7

32 1

0 0 7
32

−1
8 1 −3

32 2

z x1 x2 x3 x4 x5 RHS

-1 0 −1
16

11
4 0 5

16 -3

0 1 27
32

3
8 0 −7

32 1

0 0 7
32

−1
8 1 −3

32 2

z x1 x2 x3 x4 x5 RHS

-1 2
27 0 25

9 0 8
27

−79
27

0 32
27 1 4

9 0 −7
27

32
27

0 0 1 47
27

The solution is optimal. This tableau corresponds to the BFS x∗ = (0, 32
27 , 0,

47
27 , 0) with

z∗ = 79
27 . Note that we found −79/27 as our objective function value at optimality but that

was for the maximization problem (all coefficients’ signs were flipped in the objective). We

flip the sign of the objective function value for the original minimization problem’s objective

function value.

NOTES

• If the original problem has no feasible solutions then either Big-M method or phase I

of the two phase method yields a final solution that has at least one artificial variable

greater than zero. Otherwise, they all equal zero and the problem is feasible.

• Make sure that you understand how to handle variables that are nonpositive or unre-

stricted (urs).

• It is virtually impossible to tell if Big-M method or two phase method would yield an

easier path to the optimal solution. You have to know how both methods work.
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2.6 Exercises

(1) Solve the following problem.

min z = 2x1 + 3x2 + x3

s.t. x1 + 4x2 + 2x3 ≥ 8

−3x1 − 2x2 ≤ −6

x1, x2, x3 ≥ 0

z∗ x∗1 x∗2 x∗3

(2) Consider Example 2.10 in your notes:

• Solve the problem using Big-M method and provide the optimal solution.

• Solve the problem using two phase method and provide the optimal solution.

(3) Find the optimal solution to the problem below.

max 2x1 + 5x2 + 3x3 + x4

subject to x1 − 2x2 + x3 ≥ 20

2x1 + 4x2 + x3 = 50

x4 + x1 ≤ 10

x1, x2, x3, x4 ≥ 0.

z∗ x∗1 x∗2 x∗3 x∗4

(4) Provide explanations for your answers below.

(a) The best corner point feasible solution is an optimal solution. True or false?

(b) Convert the following inequality constraint into an equality constraint with non-

negative variables.

x1 − x2 + 2x3 ≥ 1

x1 ≥ 0, x2 ≤ 0, x3 unrestricted

(c) In each iteration of the simplex method, the value of the objective function strictly

improves. True or false?

(d) How do you detect if a Linear Programming model is infeasible or not?

(e) If the feasible region of a LP problem (maximization) with 2 variables is unbounded,

then the value of the objective function can be increased indefinitely. True or false?
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(5) Solve the following Linear Program using two phase method.

min 3x1 + x3 − 3x2

subject to x1 + 2x2 − x3 ≥ 5

−3x1 − x2 + x3 ≤ 4

x1, x2, x3 ≥ 0.

z∗ x∗1 x∗2 x∗3

(6) Is it possible for an optimization problem to have an unbounded feasible region and

alternative optima at the same time? If it is possible, give an example. If not, explain

why not.

(7) Provide the optimal solution and the optimal objective function value for the following

problem using the Big-M method.

max z = 2x1 + 3x2

s.t. x1 + 2x2 ≤ 4

x1 + x2 = 3

x1, x2 ≥ 0

z∗ x∗1 x∗2

2.7 Further Reading and Exercises

The reader is refereed to Chapter 4 in the textbook, Introduction to Operations Research

by Hillier and Lieberman.
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Chapter 3

Theory of Simplex Method and Revised

Simplex Method

(Weeks 8-9)

The roots of the revised simplex method stems from the fundamentals and row operations

of the simplex algorithm. Keep in mind that for any set of basic variables, a legitimate

simplex tableau can be constructed from the original problem as follows:

z Basic Variables Nonbasic Variables RHS

1 −cB −cN 0

~0 B N b

Original

Problem

⇓

z Basic Variables Nonbasic Variables RHS

1 ~0 cBB
−1N − cN cBB

−1b

~0 I B−1N B−1b

Corresponding

Simplex

Tableau

You can always use cBB
−1Aj − cj and B−1Aj in the corresponding simplex

tableau for any variable j, regardless of being basic or nonbasic.

Consider the Wyndor Glass Co. Example in the following augmented form:

max 3x1+ 5x2

s.t. x1 + x3 = 4

2x2 + x4 = 12

3x1+ 2x2 + x5 = 18

x1, x2, x3, x4, x5 ≥ 0

53
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First iteration for x3, x4, x5 in the basis:

Basic Variables: xB = [x3, x4, x5]

Nonbasic Variables: xN = [x1, x2]

Coefficients of basic variables in objective function: cB = [0 0 0]

Coefficients of nonbasic variables in objective function: cN = [3 5]

Coefficients of basic variables in constraints:

B =


1 0 0

0 1 0

0 0 1


Coefficients of nonbasic variables in constraints:

N =


1 0

0 2

3 2



B−1 =


1 0 0

0 1 0

0 0 1



B−1N =


1 0

0 2

3 2

 B−1b =


4

12

18


Optimality check:

cBB
−1N − cN = [0 0 0]


1 0

0 2

3 2

− [3 5]

= [−3 − 5]

I recommend that you try and picture the tableau that corresponds to that basis

x3, x4, x5.

Entering variable is x2.

Minimum Ratio Test: min { 4
0=unidentified , 12

2 =6 , 18
2 =9 }= 6

Leaving Variable is x4.

Second iteration for basis x3, x2, x5:
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xB = [x3, x2, x5]

xN = [x1, x4]

cB = [0 5 0]

cN = [3 0]

B =


1 0 0

0 2 0

0 2 1

 B−1 =


1 0 0

0 1
2 0

0 −1 1



N =


1 0

0 1

3 0

 B−1N =


1 0

0 1
2

3 −1



B−1b =


1 0 0

0 1
2 0

0 −1 1




4

12

18

 =


4

6

6


Optimality check:

cBB
−1N − cN = [0 5 0]


1 0

0 1
2

3 −1

− [3 0]

= [−3
5

2
]

Entering variable is x1.

Minimum Ratio Test: min { 4
1=4 , 6

0=unidentified , 6
3=2 }=2

Leaving Variable is x5.

Third iteration for basis x3, x2, x1:

xB= [ x3 , x2 , x1 ]

xN= [ x5 , x4 ]

cB= [ 0 5 3 ]

cN= [ 0 0 ]

B =


1 0 1

0 2 0

0 2 3

 B−1 =


1 1

3
−1
3

0 1
2 0

0 −1
3

1
3
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N =


0 0

0 1

1 0

 B−1N =


−1
3

1
3

0 1
2

1
3
−1
3

 B−b =


2

6

2


Optimality check:

cBB
−1N − cN = [0 5 3]


−1
3

1
3

0 1
2

1
3
−1
3

− [0 0]

= [1
3

2
]

It is the optimal solution!

Objective Function Value: z∗ = cBB
−1b = [0 5 3]


2

6

2

 = 36

Make sure that you can report the values of variables x1 through x5.

3.1 Revised Simplex Method

Initialization: Same as for the original simplex method.

Iteration:

Step 1: Determine the entering basic variable: Same as for the original simplex method.

Step 2: Determine the leaving basic variable: Same as for the original simplex method,

except calculate only the numbers required to do this - the coefficients of the entering

basic variable in every equation but Eq. (0), and then, for each strictly positive coefficient,

the right-hand side of that equation.

Step 3: Determine the new BF solution: Derive B−1 and set xB = B−1b.

Optimality test: Same as for the original simplex method, except calculate only the

numbers required to do this test, i.e., the coefficients of the nonbasic variables in Eq. (0).

3.2 Updating B−1 Without Matrix Inversion

To describe this method formally,

let xk be the entering basic variable,

a′ik= coefficient of xk in current Eq. (i), for i = 1, 2, ...,m (calculated in step 2 of an

iteration),
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r = equation index for the leaving basic variable.

(B−1
new)ij =

 (B−1
old)ij − a′

ik

a′
rk

(B−1
old)rj if i 6= r

1
a′
rk

(B−1
old)rj if i = r

These formulas are expressed in matrix notation as

B−1
new = EB−1

old,

where matrix E is an identity matrix except that its rth column is replaced by the vector

η =


η1

η2

...

ηm

, where

ηi =


−a′

ik

a′
rk

if i 6= r

1
a′
rk

if i = r

Let’s go back and obtain B−1’s in the previous example without “any” matrix inversion,

η =


−a12

a22

1
a22

−a32

a22

 =


0

1
2

−1



B−1 =


1 0 0

0 1
2 0

0 −1 1




1 0 0

0 1 0

0 0 1

 =


1 0 0

0 1
2 0

0 −1 1


Next iteration,

η =


− a′

11

a′31

− a′
21

a′31

1
a′31

 =


− 1

3

0

1
3



B−1 =


1 0 − 1

3

0 1 0

0 0 1
3




1 0 0

0 1
2 0

0 −1 1

 =


1 1

3 −
1
3

0 1
2 0

0 − 1
3

1
3



3.3 Fundamental Insight

After any iteration, the coefficients of the slack variables in each equation immediately

reveal how that equation has been obtained from the initial equations. In other words, you

can read B−1 from under the slack variables for any iteration of the simplex.

Simplex tableaux without leftmost columns for the Wyndor Glass Co. problem:
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Iteration

x1 x2 x3 x4 x5 Right Side

0 -3 -5 0 0 0 0

1 0 1 0 0 4

0 2 0 1 0 12

3 2 0 0 1 18

1 -3 0 0 5/2 0 30

1 0 1 0 0 4

0 1 0 1/2 0 6

3 0 0 -1 1 6

2 0 0 0 3/2 1 36

0 0 1 1/3 -1/3 2

0 1 0 1/2 0 6

1 0 0 -1/3 1/3 2

3.4 A Note on Shadow Prices

Shadow price for resource i (denoted by y∗i ) measures the marginal value of that resource i.e,

the rate at which z could be increased by (slightly) increasing the amount of this resource

(bi).

This is extremely important from a managerial standpoint considering most of the num-

bers in your optimization models are estimated by the operations management team.

? The key question: Which constraints are binding?

In other words, which resources are depleted at optimality?

In other words, which resources are more crucial for the model?

max 3x1 + 5x2

s.t. x1 ≤ 4 (nonbinding) at optimality

2x2 ≤ 12 (binding) at optimality

3x1 + 2x2 ≤ 18 (binding) at optimality

x1, x2 ≥ 0

Shadow price for second constraint is 3
2 . It means z increases by 3

2 units if RHS value of

second constraint is increased by one unit.

Shadow price for first constraint is 0.
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z x1 x2 x3 x4 x5 RHS

1 0 0 0 3
2 1 36

0 0 0 1 1
3

−1
3 2

0 0 1 0 1
2 0 6

0 1 0 0 −1
3

1
3 2

Shadow price for third constraint is 1.

That optimal table and shadow prices show that second resource is relatively the most

important.

Remember the graph:

(6, 0)(4, 0)

(0, 6)

(0, 9)

(2, 6)

(4, 3)

(4, 6)

(0, 0)

Feasible
region

x1 ! 0

3x1 " 2x2 ! 18

x2 ! 0

x1 ! 4

2x2 ! 12

Maximize Z ! 3x1 " 5x2,
subject to

x1 #   4
# 12
# 18

2x2

2x23x1 "
and

x1 $ 0, x2 $ 0 

x2

x1

These numbers also justify which constraints are binding are which ones are not.
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3.5 Exercises

(1) Consider the following problem.

max z = c1x1 + 2x2 + c3x3

s.t. a11x1 + a12x2 + a13x3 ≤ 60

a21x1 + a22x2 + a23x3 ≤ 10

a31x1 + a32x2 + a33x3 ≤ 20

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

Let x4, x5, and x6 denote the slack variables for the first, second, and third constraints,

respectively. After we apply the simplex method for a few iterations, an intermediate

simplex tableau is as follows:

z x1 x2 x3 x4 x5 x6 Right Side

1 0 0 0 f04 3 7/2 r0

0 1 0 0 1 −1 −2 r1

0 0 1 0 −1/2 1 3/2 r2

0 0 0 1 3/2 −2 −5/2 r3

Suppose that the tableau above is not optimal and the optimal basis is known to be x2,

x3, and x4. Find the optimal solution (z∗, x∗1, x
∗
2, x
∗
3, x
∗
4, x
∗
5, x
∗
6).

(2) Consider the following problem.

max 20x1 + 6x2 + 8x3

s.t. 8x1 + 2x2 + 3x3 ≤ 200

4x1 + 3x2 + 3x3 ≤ 100

2x1 + 3x2 + x3 ≤ 50

x3 ≤ 20

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

Let x4, x5, x6, and x7 denote the slack variables for the first through fourth constraints,

respectively.

(a) Suppose that after some number of iterations of the simplex method, x1, x2, x6,

and x7 are in the basis. Is this a basic feasible solution? Explain why/why not.

(b) Starting with the basis in part (a), use revised simplex method to find the optimal

solution and the optimal objective function value.

(3) Consider the following problem and do not use simplex method from the scratch.

max c1x1 + c2x2 + c3x3
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subject to x1 + 2x2 − x3 ≤ 2

−x1 + 4x2 + 2x3 ≥ 5

3x1 + x2 − x3 ≤ 4

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

(a) Suppose that after some number of iterations of the simplex method, x1, x2, and

x3 are in the basis. Is this a basic feasible solution? Compute values for x1, x2,

x3, x4 (slack for the first constraint), x5 (surplus for the second constraint), and x6

(slack for the third constraint).

(b) Find values (or ranges) for c1, c2, and c3 such that the solution provided in part

(a) is optimal.

(c) Suppose c1 = 0, c2 = 4, and c3 = 0. Starting with the solution in part (a), perform

one iteration of revised simplex method.

(4) Consider the following problem.

max z = −2x1 − 3x2 − 2x3,

s.t. x1 + 4x2 + 2x3 ≥ 8

3x1 + 2x2 + 2x3 ≥ 6

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

Let x4 and x6 be the surplus variables for the first and second constraints, respectively;

and x̄5 and x̄7 be the corresponding artificial variables. After you apply the simplex

method, a portion of the final simplex tableau is as follows:

z x1 x2 x3 x4 x̄5 x6 x̄7 RHS

M − 0.5 M − 0.5

0.3 −0.1

−0.2 0.4

Identify the missing numbers in the above simplex tableau. Show your calculations.

(5) Solve the following problem using revised simplex method. Start with variables x1, x2, x6

(slack variable for third constraint) in the basis.

min z = 2x1 + 3x2 − x3

s.t. x1 + 4x2 + 2x3 ≥ 8

3x1 + 2x2 ≥ 6

x1 + x2 + x3 ≤ 5

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.
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(6) Consider the following problem.

min z = 2x1 + 3x2 − x3

s.t. x1 + 4x2 + 2x3 ≥ 8

3x1 + 2x2 ≥ 6

x1 + x2 + x3 ≤ 5

x1 ≤ 4

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

(a) Suppose that after some number of iterations of the simplex method, x1, x2, x6

(slack variable for third constraint), and x7 (slack variable for fourth constraint) are

in the basis. Is this a basic feasible solution? Explain why/why not.

(b) Starting with the basis in part (a), perform one iteration of revised simplex method

to identify a new solution and denote if this solution is optimal or not.

z x1 x2 x3

(7) Consider the following problem.

max −5x1 + c2x2 + c3x3 + c4x4

s.t. a11x1 + a12x2 − 3x3 + a14x4 ≥ b1
a21x1 + a22x2 + 10x3 + a24x4 = b2

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

Suppose x5 is the surplus variable for constraint 1 and the simplex method yields the

following tableau.

z x1 x2 x3 x4 x5 Right Side

1 0 0 2 0 5 100

0 16 1 −2 0 −4 10

0 −1 0 3 1 1 20

Find missing values in the problem. Show all your work and write the values of missing

parameters in the table below.

c2 c3 c4 a11 a12 a14 b1 a21 a22 a24 b2

(8) Consider the following problem.

max z = 4x1 − x2 + 2x3
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Theory of Simplex and Revised Simplex Method 63

s.t. 2x1 − 2x2 + 3x3 ≤ 5

x1 + x2 − x3 ≤ 3

x1 − x2 + x3 ≤ 2

x1, x2, x3 ≥ 0

Let x4, x5, and x6 denote the slack variables for constraints 1, 2, and 3, respectively.

After you apply the simplex method, a portion of an intermediate simplex tableau is as

follows:

z x1 x2 x3 x4 x5 x6 Right Side

1 1 1 0

0 1 3 0

0 0 1 1

0 1 2 0

(a) Identify the missing numbers in the simplex tableau. Show your calculations.

(b) Starting with the given tableau, find the optimal solution and optimal objective

function value using revised simplex method. You are not allowed to invert

a matrix during this procedure.

z∗ x∗1 x∗2 x∗3

3.6 Further Reading and Exercises

The reader is refereed to Chapter 5 in the textbook, Introduction to Operations Research

by Hillier and Lieberman.
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64 Theory of Simplex and Revised Simplex Method
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Chapter 4

Duality

(Weeks 10-11)

Each linear programming problem has a corresponding dual problem. Let’s call our original

linear programming problem primal problem and consider its dual problem. In this chapter,

we will learn certain relationships between primal and dual problems (duality theory), that

provide certain insights and help with optimization of the primal problem. These properties

will also help us in the next chapter, where we conduct sensitivity analysis.

Next, we discuss how to obtain the dual formulation. Consider the following primal

problem:

max 3000x1 + 5000x2

s.t. x1 ≤ 4

2x2 ≤ 12

3x1 + 2x2 ≤ 18

x1, x2 ≥ 0

Then, the corresponding dual problem is as follows:

min 4y1 + 12y2 + 18y3

s.t. y1 + 3y3 ≥ 3000

2y2 + 2y3 ≥ 5000

y1, y2, y3 ≥ 0

??? How many variables are there in the primal? In the dual?

??? How many constraints are there in the primal? In the dual?

Make sure that you digest the following correspondence between entities in primal and

dual problems:

One Problem Other problem

Constraint i Variable i

Objective Function Right Hand Sides

65
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First thing to note: Dual of the dual is primal problem.

Second thing to note: You have to understand how dual is found. The following table

lists the relationship between one problem and its dual.

One Problem (obj.) Other problem (opposite obj.)

Constraint i Variable i

Coefficients (in row) Coefficients (in column)

Constraint inequality directions Variable signs

Objective Function (coefficients) Right Hand Sides (coefficients)

The inequalities and variable signs for a primal-dual pair can be summarized as follows:

max problem min problem

variable ≥ 0 ≥ constraint

variable ≤ 0 ≤ constraint

variable urs. = constraint

≥ constraint variable ≤ 0

≤ constraint variable ≥ 0

= constraint variable urs.

Below is another example with all possible types of inequalities and variable signs.

Example 4.1 Construct the dual for the following problem:

max 2x1 + x2 + 3x3

s.t. x1 + x2 + x3 = 3

x1 − 2x2 + x3 ≥ 1

2x2 + x3 ≤ 2

x1 ≥ 0, x2 ≤ 0, x3 urs.

Solution

min 3y1 + y2 + 2y3

s.t. y1 + y2 ≥ 2

y1 − 2y2 + 2y3 ≤ 1

y1 + y2 + y3 = 3

y1urs., y2 ≤ 0, y3 ≥ 0
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Example 4.2 Construct the dual for the following problem. Note that it is the same

problem as above but the direction of the objective function has changed only.

min 2x1 + x2 + 3x3

s.t. x1 + x2 + x3 = 3

x1 − 2x2 + x3 ≥ 1

2x2 + x3 ≤ 2

x1 ≥ 0, x2 ≤ 0, x3 urs.

Solution

max 3y1 + y2 + 2y3

s.t. y1 + y2 ≤ 2

y1 − 2y2 + 2y3 ≥ 1

y1 + y2 + y3 = 3

y1urs., y2 ≥ 0, y3 ≤ 0

Matrix Representation of Primal in Canonical Form:

max z = cTx

s.t. Ax ≤ b
x ≥ 0

Matrix Representation of the Dual:

min w = yT b

s.t. AT y ≥ c
y ≥ 0

Note that c, b, x, and y are a column vectors, and A is a matrix. Also note that cx, yb,

cBB
−1 are fairly common usages although they formally imply cTx, yT b, cTBB

−1.

4.1 Connection between the primal and dual optimal solutions

Consider the Wyndor Glass Co. Problem again.

max z −3x1 −5x2 +0x3 +0x4 +0x5 = 0
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s.t. x1 +x3 = 4

2x2 +x4 = 12

3x1 +2x2 +x5 = 18

x1, x2 ≥ 0

Primal Solution:

Iteration 0

z x1 x2 x3 x4 x5 RHS

1 -3 -5 0 0 0 0

0 1 0 1 0 0 4

0 0 2 0 1 0 12

0 3 2 0 0 1 18

Iteration 1

z x1 x2 x3 x4 x5 RHS

1 -3 0 0 5
2 0 30

0 1 0 1 0 0 4

0 0 1 0 1
2 0 6

0 3 0 0 -1 1 6

Iteration 2

z x1 x2 x3 x4 x5 RHS

1 0 0 0 3
2 1 36

0 0 0 1 1
3 − 1

3 2

0 0 1 0 1
2 0 6

0 1 0 0 − 1
3

1
3 2

Optimal Solution: (x∗1, x
∗
2, x
∗
3, x
∗
4, x
∗
5) = (2, 6, 2, 0, 0)

z∗ = 36

Shadow Prices for the constraints: (0, 3
2 , 1)
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Dual Problem:

min 4y1 + 12y2 + 18y3

s.t. y1 + 3y3 ≥ 3

2y2 + 2y3 ≥ 5

y1, y2, y3 ≥ 0

In augmented form:

min 4y1 + 12y2 + 18y3

s.t. y1 + 3y3 − y4 = 3

2y2 + 2y3 − y5 = 5

y1, y2, y3, y4, y5 ≥ 0

Dual Solution:

Iteration 0

z y1 y2 y3 y4 y5 y′4 y′5 RHS

-1 4 12 18 0 0 M M 0

0 1 0 3 -1 0 1 0 3

0 0 2 2 0 -1 0 1 5

Iteration 0

z y1 y2 y3 y4 y5 y′4 y′5 RHS

-1 −M + 4 −2M + 12 −5M + 18 M M 0 0 −8M

0 1 0 3 -1 0 1 0 3

0 0 2 2 0 -1 0 1 5

Iteration 1

z y1 y2 y3 y4 y5 y′4 y′5 RHS

-1 2M
3 − 2 −2M + 12 0 − 2M

3 + 6 M 5M
3 − 6 0 −3M − 18

0 1
3 0 1 −1

3 0 1
3 0 1

0 −2
3 2 0 2

3 -1 −2
3 1 3
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Iteration 2

z y1 y2 y3 y4 y5 y′4 y′5 RHS

-1 2 0 0 2 6 M − 2 M − 6 -36

0 1
3 0 1 −1

3 0 1
3 0 1

0 −1
3 1 0 1

3
−1
2

−1
3

1
2

3
2

Optimal Solution: (y∗1 , y
∗
2 , y
∗
3 , y
∗
4 , y
∗
5) = (0, 3

2 , 1, 0, 0)

w∗ = 36

Shadow Prices for the constraints: (2, 6)

? Can you derive any correlation between the primal and dual optimal solutions and

their corresponding shadow prices?

?? Make sure that you understand which shadow price (dual variable) indicate what.

You may be able to obtain the dual optimal solution from primal optimal solution and vice

versa. How?

• cBB−1 values in the primal solution are equal to y values of the corresponding dual

solution. Think about the simplex tableau.

• Furthermore, z∗ = cBB
−1b= y∗T b = w∗

So the optimal objective values of the primal and the dual are equal.

For the Economic Interpretation of the Dual Problem, the reader is referred to Op-

erations Research: Applications and Algorithms by Wayne L. Winston. In Section 6.6 of

that book, the dual of the Dakota problem (introduced in Section 4.5) is discussed in detail.

4.2 Summary of Primal-Dual Relationships

Weak duality property: If x is a feasible solution for the maximization problem and y

is a feasible solution for the corresponding dual minimization problem, then cx ≤ yb. You

can observe this from each iteration of the simplex algorithm for both primal and dual.

Strong duality property: If x∗ is an optimal solution for the primal problem and y∗ is

an optimal solution for the dual problem, then cx∗ = y∗b.

Complementary solutions property: At each iteration, the simplex method simultane-

ously identifies a CPF solution x for the primal problem and a complementary solution y

for the dual problem (found in row 0, the coefficients of the slack variables), where cx = yb.
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If x is not optimal for the primal problem, then y is not feasible for the dual

problem.

For a primal problem of size m by n, i.e., m constraints and n original variables, the fol-

lowing relationships between complementary basic solutions (also known as complementary

slackness) hold:

Primal Variable Associated Dual Variable Number of Variables

Basic Nonbasic m

Nonbasic Basic n

The key here is to understand which dual variable, each variable is associated with.

Let’s revisit our previous examples and understand that association, which is extremely

important.
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[P1] max 3x1 + 5x2 [D1] min 4y1 + 12y2 + 18y3

s.t. x1 ≤ 4 s.t. y1 + 3y3 ≥ 3

2x2 ≤ 12 2y2 + 2y3 ≥ 5

3x1 + 2x2 ≤ 18 y1, y2, y3 ≥ 0

x1, x2 ≥ 0

Solution & Obj. Func. Val. Solution & Obj. Func. Val.

Note that you need to work out with the original problem to find the associated dual.

Next, you will need to write both primal and dual in standard form to observe a full picture

of all variables.
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[P2] max 2x1 + x2 + 3x3 [D2] min 3y1 + y2 + 2y3

s.t. x1 + x2 + x3 = 3 s.t. y1 + y2 ≥ 2

x1 − 2x2 + x3 ≥ 1 y1 − 2y2 + 2y3 ≤ 1

2x2 + x3 ≤ 2 y1 + y2 + y3 = 3

x1 ≥ 0, x2 ≤ 0, x3 urs. y1urs., y2 ≤ 0, y3 ≥ 0

Solution & Obj. Func. Val. Solution & Obj. Func. Val.

An unrestricted variable is always basic, even if it is equal to zero!
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Complementary optimal solutions property: At the final iteration, the simplex

method simultaneously identifies an optimal solution x∗ for the primal problem and a com-

plementary optimal solution y∗ for the dual problem (found in row 0, the coefficients of the

slack variables), where cx∗ = y∗b. The y∗i ’s are the shadow prices for the primal problem.

??? Make sure that you see each corresponding dual (infeasible) solution for the steps of

simplex algorithm on primal problem in Section 4.1.

? In general, you can see corresponding primal (infeasible) solutions for the steps of

simplex algorithm on the dual problem. However, in this case in Section 4.1, when a feasible

solution is found for the dual (whose objective is not a function of M), we immediately reach

optimality so we only see a dual and primal feasible solution, thus optimality.

? Note that dual feasibility in simplex is synonymous to optimality conditions.

4.3 Duality Theory

• If one problem (primal or dual) is feasible and bounded so is the other.

• If one problem (primal or dual) is feasible but unbounded than the other is infeasible.

• If one problem (primal or dual) is infeasible then the other is either infeasible or un-

bounded.

? Think about the cases of degeneracy and alternative optima. What will be observed

in the dual?

Notes on the Simplex Method

• The simplex method finds a specific pair of solutions (x, y) for the primal and dual

problems at each iteration such that cx = yb

• The primal solution is feasible but the dual solution is not feasible except for the optimal

solution.

• When the primal reaches optimality, the dual solution found becomes feasible, which is

also optimal.

Notes on complementary slackness

In a CP solution to an LP problem, when a dual (primal) variable is basic then the slack

(surplus) variable in the corresponding primal (dual) constraint is nonbasic.

In iteration 2 of Wyndor Glass Co. Problem, primal basic variables: x1, x2, x3 and corre-

sponding nonbasic dual variables: y4, y5, y1
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4.4 Exercises

(1) Find the dual of the following problem.

min 2x1 + 15x2 + 5x3 + 6x4

s.t. −2x1 + 5x2 − 4x3 + 3x4 ≤ −3

x1 + 6x2 + 3x3 + x4 ≥ 2

x1, x2, x3, x4 ≥ 0

(2) Consider the following problem:

max 4x1 + x2

s.t. x1 + x2 ≤ 10

3x1 + x2 ≥ 5

x1 ≤ 0, x2 ≥ 0

(a) Construct the corresponding dual problem.

(b) Find all corner point solutions for the primal problem and their associated dual

solutions using complementary slackness.

(3) Consider the following problem.

min 2x1 + 2x3 − x4

s.t. x1 + x2 + x3 + x4 ≤ 8

2x1 − x2 + 3x3 − 2x4 ≥ 5

x1, x2, x3, x4 ≥ 0

a. Construct the optimal tableau.

b. Would the optimal basis stay feasible when b1 changes from 8 to 1?

(4) Give the dual of the following problem. Identify corner point primal and corresponding

corner point dual solutions.

max −2x1 + 3x2 + 5x3

s.t. −2x1 + x2 + 3x3 + x4 ≥ 5

2x1 + x3 = 4

−2x2 + x3 + x4 ≤ 6

x1 ≤ 0

x2, x3 ≥ 0
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(5) Consider the following problem.

min c2x2 − x1 − x3

s.t. x3 − x1 − x2 ≤ 1

2x1 − x2 + x3 ≤ 2

−2 ≤ x1 ≤ 1

−2 ≤ x3 ≤ −1

(a) Construct the dual problem.

(b) Use duality theory and explain if (x1, x2, x3) = (−1, 2,−1) can be an optimal solu-

tion. Does your answer depend on c2? If so, provide necessary conditions.

(c) Use duality theory and explain if (x1, x2, x3) = (1/3,−10/3,−2) can be an optimal

solution. Does your answer depend on c2? If so, provide necessary conditions.

(d) Provide a feasible corner point solution (x1, x2, x3) other than those provided above

and obtain the corresponding dual solution.

(6) Suppose we have a problem P and its dual D. If P is infeasible and there exists a feasible

solution for D, then what can we conclude about D? Explain.

4.5 Further Reading and Exercises

The reader is refereed to Chapter 6 (up to Section 6.5) in the textbook, Introduction to

Operations Research by Hillier and Lieberman.
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Sensitivity Analysis

(Weeks 12-14)

We are not done when the simplex method has been successfully applied to identify an opti-

mal solution for the model. It is important to perform sensitivity analysis to investigate

the effect on the optimal solution provided by the simplex method if the parameters take

on other possible values. Usually there will be some parameters that can be assigned any

reasonable value without the optimality of this solution being affected. However, there may

also be parameters with likely alternative values that would yield a new optimal solution.

This situation is particularly serious if the original solution would then have a substantially

inferior value of the objective function, or perhaps even be infeasible!

Therefore, one main purpose of sensitivity analysis is to identify the sensitive parameters

(i.e., the parameters whose values cannot be changed without changing the optimal solu-

tion). For certain parameters that are not categorized as sensitive, it is also very helpful to

determine the range of values of the parameter over which the optimal solution will remain

unchanged. (We call this range of values the allowable range to stay optimal.) In some

cases, changing a parameter value can affect the feasibility of the optimal BF solution. For

such parameters, it is useful to determine the range of values over which the optimal BF

solution (with adjusted values for the basic variables) will remain feasible. (We call this

range of values the allowable range to stay feasible.)

GOOD NEWS: We won’t learn something new (except for the dual simplex method)

in this chapter! We will simply be applying the theory of simplex method and insights of

revised simplex method in a new context.

5.1 Changes in the Right Hand Side

What would happen to the optimal objective function value of this problem if the RHS of

this constraint was increased by one?

77
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The shadow price of that constraint is the answer to this question. Remember our

discussion on the interpretation of shadow prices.

Example 5.1 Remember the Wyndor Glass Co. Example given as follows:

max z = 3x1 + 5x2

s.t. x1 ≤ 4

2x2 ≤ 12

3x1 + 2x2 ≤ 18

x1, x2 ≥ 0

Final tableau is as follows:

z x1 x2 x3 x4 x5 RHS

1 0 0 0 3
2 1 36

0 0 0 1 1
3 − 1

3 2

0 0 1 0 1
2 0 6

0 1 0 0 − 1
3

1
3 2

Optimal solution: x∗1 = 2, x∗2 = 6, x∗3 = 2, z∗ = 36

• How will the optimal solution be affected if the RHS of the second constraint is increased

by one unit?

2x2 ≤ 13

The optimal solution changes as much as shadow price value of second constraint.

z∗new = 36 + y2 = 36 + [cBB
−1]2 = 36 + 3

2

• Assume that b has been changed as b′.

Calculate the new RHS values in the final tableau as:

x∗B = B−1b′

Calculate the new z∗ as:

z∗ = cBB
−1b′

Example 5.2 Consider Wyndor Glass Co. Example again. Assume that RHS value of

third constraint has increased to 30.

3x1 + 2x2 ≤ 30
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b′ =


4

12

30

 B−1b′=


1 1

3
−1
3

0 1
2 0

0 −1
3

1
3




4

12

30

 =


−2

6

6



This indicates that the current solution will no longer be feasible.

In this case, if we want to find the new solution, we need to apply dual simplex (will be

discussed later), to find a primal feasible solution.

Range for Feasibility for b

Example 5.3 What is the range for feasibility for b3 which is 18 in the original problem?

B−1b′ =


1 1

3
−1
3

0 1
2 0

0 −1
3

1
3




4

12

18 + ∆

 ≥


0

0

0


2 + −∆

3 ≥ 0 ⇒ ∆ ≤ 6

6 ≥ 0

2 + ∆
3 ≥ 0 ⇒ ∆ ≥ −6

−6 ≤ ∆ ≤ 6 ⇒ 12 ≤ b3 ≤ 24

As long as we stay in this range, the optimal solution and the shadow price for the third

constraint will not change.

5.2 Changes in the Coefficients of a Nonbasic Variable

Changes in the coefficient of a nonbasic variable in objective function may change the basis

and the optimal solution.

Example 5.4 Consider the following new problem (this is not Wyndow Glass Co. exam-

ple)

max 3x1 + 5x2 + 4x3

s.t. x1 ≤ 4

2x2 + 2x3 ≤ 12

3x1 + 2x2 + x3 ≤ 18

x1, x2, x3 ≥ 0

Final Tableau
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80 Sensitivity Analysis

z x1 x2 x3 x4 x5 x6 RHS

1 0 0 0 0 3
2 1 36

0 0 −1
3 0 1 1

6
−1
3 0

0 0 1 1 0 1
2 0 6

0 1 1
3 0 0 −1

6
1
3 4

Assume that the coefficient of second variable in the objective function has increased to

8. We should check optimality of the current basis. Why don’t we need to check feasibility?

cBB
−1N − cN = [0 4 3]


−1
3

1
6
−1
3

1 1
2 0

1
3
−1
6

1
3

− [8 0 0]

= [5,
3

2
, 1]− [8 0 0]

= [−3,
3

2
, 1]

This is not optimal. We should continue with next simplex iteration.

5.3 Changes in the Coefficients of a Basic Variable

Example 5.5 Consider Wyndor Glass Co. Example again.

Assume that coefficient of x1 in the objective function has decreased from 3 to 1.

Final tableau of the original problem:

z x1 x2 x3 x4 x5 RHS

1 0 0 0 3
2 1 36

0 0 0 1 1
3 − 1

3 2

0 0 1 0 1
2 0 6

0 1 0 0 − 1
3

1
3 2

cBB
−1A1 − c′1 = cBB

−1A1 − (c1 − 2) = 0 + 2 = 2. Thus, we obtain

z x1 x2 x3 x4 x5 RHS

1 2 0 0 3
2 1 36

0 0 0 1 1
3 − 1

3 2

0 0 1 0 1
2 0 6

0 1 0 0 − 1
3

1
3 2

Note that this tableau is not in the proper form. We apply simple row operations and

obtain
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z x1 x2 x3 x4 x5 RHS

1 0 0 0 13
6

1
3 32

0 0 0 1 1
3 − 1

3 2

0 0 1 0 1
2 0 6

0 1 0 0 − 1
3

1
3 2

We are done as this final tableau is optimal! If this was not optimal, we would proceed

with regular simplex iterations. Note that same result would be obtained if we updated

c′BB
−1N−cN and c′BB

−1b directly as this is the only part that would change with a change

in cB . Make sure that you practice that in this problem.

? How would you compute the range for optimality for a change in objective function

coefficient of a basic variable?

? Can we make the current basis feasible but not optimal with a change in objective

function coefficient of a basic variable?

??? Can we make the current basis infeasible with a change in objective function coeffi-

cient of a basic variable?

??? What will happen with a change in constraint coefficient of a basic (or nonbasic)

variable?

??? We will not cover adding a new variable explicitly but you are responsible for that. It

is quite straightforward - you update the corresponding column for the appropriate simplex

tableau and check if that new variable enters the basis or not. Make sure that you solve the

exercises at the end of this chapter.

Example 5.6 Solve the following problem in class.

max z = −5x1 + c2x2 + c3x3 + c4x4

s.t. a11x1 + a12x2 − 3x3 + a14x4 ≥ b1
a21x1 + a22x2 + 10x3 + a24x4 = b2

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

Suppose x5 is the surplus variable for constraint 1 and the simplex method yields the

following final tableau.

z x1 x2 x3 x4 x5 Right Side

1 0 0 2 0 5 100

0 16 1 −2 0 −4 10

0 −1 0 3 1 1 20
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(1) Find the right side of the original problem

 b1
b2

 and allowable range to stay feasible

for b1.

??? How would you compute B−1?

B−1 =

 4 a

−1 b

 using the surplus column, i.e., B−1

−1

0

 =

−4

1


B−1A3 =

−2

3


 4 a

−1 b

−3

10

 =

−12 + 10a

3 + 10b

 =

−2

3


−12a+ 10a = −2

3 + 10b = 3

a = 1, b = 0

B−1 =

 4 1

−1 0


B−1b =

 4 1

−1 0

 b1
b2

 =

 10

20


b1 = −20, b2 = 90

Allowable range to stay feasible for b1:

B−1b′ =

 4 1

−1 0

 b1 + ∆

b2

 =

10 + 4∆

20−∆

 ≥
0

0


−2.5 ≤ ∆ ≤ 20⇒ −22.5 ≤ b1 ≤ 0

(2) Find the coefficient of x4 in the objective function of the original problem (i.e., c4) and

allowable range to stay optimal for c4.

Note that x4 is a basic variable!

cBB
−1N − cN = [c2 c4]

 16 −2 −4

−1 3 1

− [−5 c3 0] = [0 2 5]

[16c2 − c4 + 5 − 2c2 + 3c4 − c3 − 4c2 + c4] = [0 2 5]

c2 = 0 c3 = 13 c4 = 5

[0 5 + ∆]

 16 −2 −4

−1 3 1

− [−5 13 0] ≥ 0

[−∆ 2 + 3∆ 5 + ∆] ≥ 0

∆ ≤ 0 ∆ ≥ −2/3 ∆ ≥ −5

−2/3 ≤ ∆ ≤ 0⇒ 13/3 ≤ c4 ≤ 5

(3) Find the coefficient of x3 in the objective function of the original problem (i.e., c3) and
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allowable range to stay optimal for c3.

Note that x3 is a nonbasic variable!

c3 = 13

cBB
−1N − cN = [0 2−∆ 5] ≥ 0

2−∆ ≥ 0 ∆ ≤ 2⇒ c3 ≤ 15

5.4 Dual Simplex Method

? Think about the cases where RHS is negative but the row 0 of tableau (objective

function row) looks optimal. That’s when Dual Simplex Method is useful because this

is the case where dual problem is feasible but primal is not!

? Which of the following are possible candidates for using Simplex Method or Dual

Simplex Method?

• Change in b

• Change in cB

• Change in cN

• Change in Aj where j ∈ B
• Change in Aj where j ∈ N

Summary of the Dual Simplex Method

Initialization: Find a basic solution such that the coefficients in row 0 are zero for basic variables and

nonnegative for nonbasic variables (so the solution is optimal if it is feasible). Go to the

feasibility test.

Feasibility test: Check to see whether all the basic variables are nonnegative. If they are, then this

solution is feasible, and therefore optimal, so stop. Otherwise, go to an iteration.

Iteration: Step 1: Determine the leaving basic variable: Select the negative basic variable that has

the largest absolute value.

Step 2: Determine the entering basic variable: Select the nonbasic variable whose coef-

ficient in row 0 reaches zero first as an increasing multiple of the equation containing

the leaving basic variable is added to row 0. This selection is made by checking the

nonbasic variables with negative coefficients in that equation (the one containing the

leaving basic variable) and selecting the one with the smallest absolute value of the

ratio of the row 0 coefficient to the coefficient in that equation.

Step 3: Determine the new basic solution: Starting from the current set of equations,

solve for the basic variables in terms of the nonbasic variables by Gaussian elimination.
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When we set the nonbasic variables equal to zero, each basic variable (and z) equals the

new right-hand side of the one equation in which it appears (with a coefficient of +1).

Return to the feasibility test.

Example 5.7 Solve the following in class: Apply dual simplex method to the dual of

Wyndor Glass Co. example that is formulated as

min 4y1 + 12y2 + 18y3

s.t. y1 + 3y3 ≥ 3

2y2 + 2y3 ≥ 5

y1, y2, y3 ≥ 0

Solution

z y1 y2 y3 y4 y5 RHS

-1 4 12 18 0 0 0

0 -1 0 -3 1 0 -3

0 0 -2 -2 0 1 -5

z y1 y2 y3 y4 y5 RHS

-1 4 0 6 0 6 -30

0 -1 0 -3 1 0 -3

0 0 1 1 0 -1/2 5/2

z y1 y2 y3 y4 y5 RHS

-1 2 0 0 2 6 -36

0 1/3 0 1 -1/3 0 1

0 -1/3 1 0 1/3 -1/2 3/2

Example 5.8 Suppose that we introduce a new constraint 2x1 + x3 + 3x4 ≤ 50 to the

problem in Example 5.6. Find the optimal solution.

Solution

2x1 + x3 + 3x4 + x6 = 50 can be added to the final simplex tableau.
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z x1 x2 x3 x4 x5 x6 RHS

1 0 0 2 0 5 0 100

0 16 1 -2 0 -4 0 10

0 -1 0 3 1 1 0 20

0 2 0 1 3 0 1 50

1 0 0 2 0 5 0 100

0 16 1 -2 0 -4 0 10

0 -1 0 3 1 1 0 20

0 5 0 -8 0 -3 1 -10

1 1.25 0 0 0 4.25 0.25 97.5

0 14.75 1 0 0 -3.25 -0.25 12.5

0 0.875 0 0 1 -0.125 0.375 16.25

0 -0.625 0 1 0 0.375 -0.125 1.25

??? How would you solve it if it was an equal to constraint?

ANSWER: Try your luck with another variable to be basic or (ideally) introduce an

artificial variable and use two-phase/Big-M .

??? Pay attention to how tableau is updated in two different ways when a new variable

is added versus a new constraint is added!

5.5 Exercises

(1) Consider the following problem.

Max Z = −5x1 + 5x2 + 13x3

subject to

−x1 + x2 + 3x3 ≤ 20

12x1 + 4x2 + 10x3 ≤ 90

and

xj ≥ 0 (j = 1, 2, 3).

If we let x4 and x5 be the slack variables for the respective constraints, the simplex

method yields the following final set of equations:

(0) Z +2x3 +5x4 = 100

(1) −x1 +x2 +3x3 +x4 = 20
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(2) 16x1 −2x3 −4x4 +x5 = 10.

Now you are to conduct sensitivity analysis by independently investigating each of the

following nine changes in the original model. For each change, use the sensitivity analysis

procedure to revise this set of equations (in tableau form) and convert it to proper form

from Gausian elimination for identifying and evaluating the current basic solution. Then

test this solution for feasibility and for optimality. If either test fails, reoptimize to find

a new optimal solution.

(a) Change the right-hand side of the constraint 1 to b1 = 30.

(b) Change the right-hand side of the constraint 2 to b1 = 70.

(c) Change the right-hand sides to  b1
b2

 =

 10

100


(d) Change the coefficient of x3 in the objective function to c3 = 8.

(e) Change the coefficients of x1 to 
c1

a11

a21

 =


−2

0

5


(f) Change the coefficients of x2 to 

c2

a12

a22

 =


6

2

5


(g) Introduce a new variable x6 with coefficients

c6

a16

a26

 =


10

3

5


(h) Introduce a new constraint 2x1 + 3x2 + 5x3 ≤ 50 (Denote its slack variable by x6.)

(i) Change constraint 2 to 10x1 + 5x2 + 10x3 ≤ 100.

(2) Consider the following problem.

Max Z = 2x1 − x2 + x3

subject to
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3x1 + x2 + x3 ≤ 60

x1 − x2 + 2x3 ≤ 10

x1 + x2 − x3 ≤ 20

and

xj ≥ 0 (j = 1, 2, 3).

Let x4, x5, and x6 denote the slack variables for the respective constraints. After we

apply the simplex method, the final simplex tableau is

Basic Coefficient of: Right

Variables Eq. Z x1 x2 x3 x4 x5 x6 Side

Z (0) 1 0 0 3/2 0 3/2 1/2 25

x4 (1) 0 0 0 1 1 -1 -2 10

x1 (2) 0 1 0 1/2 0 1/2 1/2 15

x2 (3) 0 0 1 -3/2 0 -1/2 1/2 5

Now you are to conduct sensitivity analysis by independently investigating each of the

following six changes in the original model. For each change, use the sensitivity analysis

procedure to revise this final tableau and convert it to proper form from Gaussian elim-

ination for identifying and evaluating the curent basic solution. Then test this solution

for feasibility and for optimality. If either test fails, reoptimize to find a new optimal

solution.

(a) Change the right-hand sides

from


b1

b2

b3

 =


60

10

20

 to


b6

b2

b3

 =


70

20

10


(b) Change the coefficients of x1

from


c1

a11

a21

a31

 =


2

3

1

1

 to


c1

a11

a21

a31

 =


1

2

0

0
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(c) Change the coefficients of x3

from


c3

a13

a23

a33

 =


1

1

2

−1

 to


c3

a13

a23

a33

 =


2

3

1

−2


(d) Change the objective function to Z = 3x1 − 2x2 + 3x3.

(e) Introduce a new constraint 3x1 − 2x2 + x3 ≤ 30. (Denote its slack variable by x7.)

(f) Introduce a new variable x8 with coefficients
c8

a18

a28

a38

 =


−1

−2

1

2


(3) Consider the following problem.

max Z = 2x1 + 7x2 − 3x3

subject to

x1 + 3x2 + 4x3 ≤ 30

x1 + 4x2 − x3 ≤ 10

and

xj ≥ 0 (j = 1, 2, 3).

By letting x4 and x5 be the slack variables for the respective constraints, the simplex

tableau yields the following final set of equations:

(0) Z +x2 +x3 +2x5 = 20

(1) −x2 +5x3 +x4 −x5 = 20

(2) x1 +4x2 −x3 +x5 = 10

Now you are to conduct sensitivity analysis by independently investigating each of the

following seven changes in the original model. For each change, use the sensitivity

analysis procedure to revise this set of equations (in tableau form) and convert it to

proper form from Gaussian elimination for identifying and evaluating the current basic

solution. Then test this solution for feasibility and for optimality. If either test fails,

reoptimize to find a new optimal solution.



IE201 @ ÖzÜ / Fall 2018–2019 Dr. Erhun Kundakcıoğlu
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(a) Change the right-hand sides to

 b1
b2

 =

 20

30


(b) Change the coefficients of x3 to 

c3

a13

a23

 =


−2

3

−2


(c) Change the coefficients of x1 to 

c1

a11

a21

 =


4

3

2


(d) Introduce a new variable x6 with coefficients

c6

a16

a26

 =


−3

1

2


(e) Change the objective function to Z = x1 + 5x2 − 2x3.

(f) Introduce a new constraint 3x1 + 2x2 + 3x3 ≤ 25.

(g) Change the constraint 2 to x1 + 2x2 + 2x3 ≤ 35.

(4) Use the dual simplex method manually to solve the following problem.

min Z = 7x1 + 2x2 + 5x3 + 4x4

subject to

2x1 + 4x2 + 7x3 + x4 ≥ 5

8x1 + 4x2 + 6x3 + 4x4 ≥ 8

3x1 + 8x2 + x3 + 4x4 ≥ 4

xj ≥ 0 (j = 1, 2, 3, 4).

(5) Solve the following problem.

min Z = 5x1 + 3x2 + 5x3 + 4x5

subject to

x1 + x3 ≤ 5
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x2 + x5 ≥ 3

x1 + x2 + x3 + x4 = 7

xj ≥ 0 (j = 1, 2, 3, 4, 5).

5.6 Further Reading and Exercises

The reader is refereed to Chapters 6 (after Section 6.5) and 7 in the textbook, Introduction

to Operations Research by Hillier and Lieberman.
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Solutions for Exercises

The answers provided here are for reference only and are not necessarily complete/correct.

Please ask your questions to the instructor or TA.

6.1 Chapter 1 Exercises

(6) Decision variables:

x11: Amount of raw material 1 used in product 1

x12: Amount of raw material 1 used in product 2

x21: Amount of raw material 2 used in product 1

x22: Amount of raw material 2 used in product 2

Model that minimizes cost:

min z = 2(x11 + x12 + x21 + x22) + (x11 + x12) + 1.5(x21 + x22)

s.t. x11 + x21 ≥ 200

x12 + x22 ≥ 400

x11 + x12 ≥ 150

x21 + x22 ≥ 150

0.03x11 + 0.02x21 ≤ 0.022(x11 + x21)

0.03x12 + 0.02x22 ≤ 0.025(x11 + x21)

x11 + x12 ≤ 0.75(x11 + x12 + x21 + x22)

x21 + x22 ≤ 0.75(x11 + x12 + x21 + x22)

x11, x12, x21, x22 ≥ 0

91
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Model that maximizes profit:

max z = 10(x11 + x21) + 8(x12 + x22)− 2(x11 + x12 + x21 + x22)− (x11 + x12)− 1.5(x21 + x22)

s.t. x11 + x21 ≥ 200

x12 + x22 ≥ 400

x11 + x12 ≥ 150

x21 + x22 ≥ 150

0.03x11 + 0.02x21 ≤ 0.022(x11 + x21)

0.03x12 + 0.02x22 ≤ 0.025(x12 + x22)

x11 + x12 ≤ 0.75(x11 + x12 + x21 + x22)

x21 + x22 ≤ 0.75(x11 + x12 + x21 + x22)

x11, x12, x21, x22 ≥ 0

(7) Decision variables:

x1: Number of notebook computers to be produced

x2: Number of desktop computers to be produced

x3: Number of tablets to be produced.

Model:

max z = 600x1 + 700x2 + 500x3

s.t. x1 + x2 + x3 ≤ 15, 000

2x1 + 4x3 + x3 ≤ 25, 000

5x1 + 4x2 + 3x3 ≤ 25, 000

x1, x2, x3 ≥ 0

(8) Decision variables:

x1:Amount of gas transferred through link 1

x2:Amount of gas transferred through link 2

x3:Amount of gas transferred through link 3

x4:Amount of gas transferred through link 4

x5:Amount of gas transferred through link 5

x6:Amount of gas transferred through link 6.

Model:
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min z = 20x1 + 25x2 + 10x3 + 15x4 + 20x5 + 40x6

s.t. x1 + x2 = 1200

x5 + x6 = 1200

x1 ≤ 500

x2 ≤ 900

x3 ≤ 700

x4 ≤ 400

x5 ≤ 600

x6 ≤ 1000

x1 + x4 = x3 + x5

x2 + x3 = x4 + x6

x1, x2, x3, x4, x5, x6 ≥ 0

(9) Decision variables:

x1:Number of special risk insurance

x2:Number of mortgage.

Model:

max z = 5x1 + 2x2

s.t. 3x1 + 2x2 ≤ 2400

2x2 ≤ 800

2x1 ≤ 1200

x1, x2 ≥ 0

(10) Decision variables:

x1:Number of hot dogs to be produced

x2:Number of hot dog buns to be produced.

Model:

max z = 0.2x1 + 0.1x2

s.t. 0.1x2 ≤ 200

0.25x1 ≤ 800

3x1 + 2x2 ≤ 12000
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x1, x2 ≥ 0

(11) Decision variables:

xij : Amount of space leased in month i for j months, i, j = 1, 2, 3, 4, 5.

Model:

min z = 65

5∑
i=1

xi1 + 100

4∑
i=1

xi2 + 135

3∑
i=1

xi3 + 160

2∑
i=1

xi4 + 190x15

s.t. x11 + x12 + x13 + x14 + x15 ≥ 30, 000

x12 + x13 + x14 + x15 + x21 + x22 + x23 + x24 ≥ 20, 000

x13 + x14 + x15 + x22 + x23 + x24 + x31 + x32 + x33 ≥ 40, 000

x14 + x15 + x23 + x24 + x32 + x33 + x41 + x42 ≥ 10, 000

x15 + x24 + x33 + x42 + x51 ≥ 50, 000

xij ≥ 0, ∀i, j i, j = 1, 2, 3, 4, 5.

Note: x25, x34, x35, x43, x44, x45, x52, x53, x54, x55 are introduced but never used above,

so they can be anything, which won’t effect the solution. x25 = x34 = x35 = x43 = x44 =

x45 = x52 = x53 = x54 = x55 = 0 can be (optionally) added.
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6.2 Chapter 2 Exercises

First Set:

(1)

• x1 = 0, x2 = 0, feasible

• x1 = 4, x2 = 0, feasible

• x1 = 6, x2 = 0, infeasible

• x1 = 4, x2 = 3, feasible

• x1 = 4, x2 = 6, infeasible

• x1 = 2, x2 = 6, feasible

• x1 = 0, x2 = 6, feasible

(2) x1, x2, x3, x4, x5 =

• (0,0,0,1,2), feasible

• (0,0,1/2,0,0), feasible

• (0,1,0,0,2), feasible

• (1,0,0,0,1), feasible

• (2,0,0,-1,0), infeasible

• (2,-1,0,0,0), infeasible

(3) b. x1, x2, x3, x4 =

• (0,0,6,6), x1 ≥ 0, x2 ≥ 0

• (0,3,3,0), x1 ≥ 0, x1 + 2x2 ≤ 6

• (3,0,0,3), x2 ≥ 0, 2x1 + x2 ≤ 6

• (2,2,0,0), 2x1 + x2 ≤ 6, x1 + 2x2 ≤ 6

c.

• (0,0,6,6): (0,3,3,0), (3,0,0,3)

• (0,3,3,0): (0,0,6,6), (2,2,0,0)

• (3,0,0,3): (0,0,6,6), (2,2,0,0)

• (2,2,0,0): (0,3,3,0), (3,0,0,3)

d.

• (0,0,6,6): z = 0

• (0,3,3,0): z = 6

• (3,0,0,3): z = 9
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• (2,2,0,0): z = 10

(4)

x1 x2 x3 x4 x5 x6 RHS

-1 -2 -4 0 0 0 0

3 1 5 1 0 0 10

1 4 1 0 1 0 8

2 0 2 0 0 1 7

x1 x2 x3 x4 x5 x6 RHS

1 2/5 -1 1/5 0 4/5 0 0 8

3/5 1/5 1 1/5 0 0 2

2/5 3 4/5 0 - 1/5 1 0 6

4/5 - 2/5 0 - 2/5 0 1 3

x1 x2 x3 x4 x5 x6 RHS

1 10/19 0 0 14/19 6/19 0 9 17/19

11/19 0 1 4/19 - 1/19 0 1 13/19

2/19 1 0 - 1/19 5/19 0 1 11/19

16/19 0 0 - 8/19 2/19 1 3 12/19

Optimal Solution (x∗1, x
∗
2, x
∗
3)=(0, 1 11/19,1 4/7) and z∗ = −9− 17/19.

Second Set:

(1)

max z = −2x1 − 3x2 − x3 −Mx′4 −Mx′5

s.t. x1 + 4x2 + 2x3 − x4 + x′4 = 8

3x1 + 2x2 − x5 + x′5 = 6

x1, x2, x3, x4, x
′
4, x5, x

′
5 ≥ 0

z x1 x2 x3 x4 x5 x′4 x′5 RHS

-1 2 3 1 0 0 M M 0

0 1 4 2 -1 0 1 0 8

0 3 2 0 0 -1 0 1 6
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z x1 x2 x3 x4 x5 x′4 x′5 RHS

-1 -4M +2 -6M+3 -2M+1 M M 0 0 -14M

0 1 4 2 -1 0 1 0 8

0 3 2 0 0 -1 0 1 6

z x1 x2 x3 x4 x5 x′4 x′5 RHS

-1 -2.5M +1.25 0 M -0.5 -0.5M+0.75 M 1.5M -0.75 0 -2M -6

0 0.25 1 0.5 -0.25 0 0.25 0 2

0 2.5 0 -1 0.5 -1 -0.5 1 2

z x1 x2 x3 x4 x5 x′4 x′5 RHS

-1 0 0 0 0.5 0.5 M -0.5 M -0.5 -7

0 0 1 0.6 -0.3 0.1 0.3 -0.1 1.8

0 1 0 -0.4 0.2 -0.4 -0.2 0.4 0.8

Optimal Solution (x∗1, x
∗
2)=(0.8,1.8) and z∗ = 7.

(2)

a.

z x1 x2 x3 x4 x5 x6 x′4 x′5 x′6 RHS

1 600 500 700 0 0 0 M M M 0

0 4 2 5 -1 0 0 1 0 0 24

0 5 6 2 0 -1 0 0 1 0 35

0 3 3 4 0 0 -1 0 0 1 30

z x1 x2 x3 x4 x5 x6 x′4 x′5 x′6 RHS

1 600-12M 500-11M 700-11M M M M 0 0 0 -89M

0 4 2 5 -1 0 0 1 0 0 24

0 5 6 2 0 -1 0 0 1 0 35

0 3 3 4 0 0 -1 0 0 1 30

z x1 x2 x3 x4 x5 x6 x′4 x′5 x′6 RHS

1 0 -5M +200 4M -50 -2M +150 M M 3M-150 0 0 -17M-3600

0 1 1/2 1 1/4 - 1/4 0 0 1/4 0 0 6

0 0 3 1/2 -4 1/4 1 1/4 -1 0 -1 1/4 1 0 5

0 0 1 1/2 1/4 3/4 0 -1 - 3/4 0 1 12
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z x1 x2 x3 x4 x5 x6 x′4 x′5 x′6 RHS

1 0 0 -29M/14

+2700/14

-3M/14

+1100/14

-3M/7

+400/7

M 17M/14-

1100/14

10M/7-

400/7

0 -69M/7-

27200/7

0 1 0 1 6/7 - 3/7 1/7 0 3/7 - 1/7 0 5 2/7

0 0 1 -1 3/14 5/14 - 2/7 0 - 5/14 2/7 0 1 3/7

0 0 0 2 1/14 3/14 3/7 -1 - 3/14 - 3/7 1 9 6/7

z x1 x2 x3 x4 x5 x6 x′4 x′5 x′6 RHS

1 29M/26 -

2700/26

0 0 -126M/182

+22400/182

-49M/182

+7700/182

M 308M/182

-224/182

231M/182 -

7700/182

0 -721M/182 -

807100/182

0 7/13 0 1 - 3/13 1/13 0 3/13 - 1/13 0 2 11/13

0 17/26 1 0 1/13 - 5/26 0 - 1/13 5/26 0 4 23/26

0 -1 3/26 0 0 9/13 7/26 -1 - 9/13 - 7/26 1 3 25/26

z x1 x2 x3 x4 x5 x6 x′4 x′5 x′6 RHS

1 94 4/9 0 0 0 -5 5/9 177 7/9 M M + 50/9 M-1600/9 -5138 8/9

0 1/6 0 1 0 1/6 - 1/3 0 - 1/6 1/3 4 1/6

0 7/9 1 0 0 - 2/9 1/9 0 2/9 - 1/9 4 4/9

0 -1 11/18 0 0 1 7/18 -1 4/9 -1 - 7/18 1 4/9 5 13/18

z x1 x2 x3 x4 x5 x6 x′4 x′5 x′6 RHS

1 71 3/7 0 0 14 2/7 0 157 1/7 M-100/7 M M-1100/7 -5057 1/7

0 6/7 0 1 - 3/7 0 2/7 3/7 0 - 2/7 1 5/7

0 - 1/7 1 0 4/7 0 - 5/7 - 4/7 0 5/7 7 5/7

0 -4 1/7 0 0 2 4/7 1 -3 5/7 -2 4/7 -1 3 5/7 14 5/7

Optimal Solution (x∗1, x
∗
2, x
∗
3)=(0, 7 5/7,1 5/7) and z∗=5057 1/7 .

b.

Phase 1

z x1 x2 x3 x4 x5 x6 x′4 x′5 x′6 RHS

1 0 0 0 0 0 0 1 1 1 0

0 4 2 5 -1 0 0 1 0 0 24

0 5 6 2 0 -1 0 0 1 0 35

0 3 3 4 0 0 -1 0 0 1 30
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z x1 x2 x3 x4 x5 x6 x′4 x′5 x′6 RHS

1 -12 -11 -11 1 1 1 0 0 0 -89

0 4 2 5 -1 0 0 1 0 0 24

0 5 6 2 0 -1 0 0 1 0 35

0 3 3 4 0 0 -1 0 0 1 30

z x1 x2 x3 x4 x5 x6 x′4 x′5 x′6 RHS

1 0 -5 4 -2 1 1 3 0 0 -17

0 1 1/2 1 1/4 - 1/4 0 0 1/4 0 0 6

0 0 3 1/2 -4 1/4 1 1/4 -1 0 -1 1/4 1 0 5

0 0 1 1/2 1/4 3/4 0 -1 - 3/4 0 1 12

z x1 x2 x3 x4 x5 x6 x′4 x′5 x′6 RHS

1 0 0 -2 1/14 - 3/14 - 3/7 1 1 3/14 1 3/7 0 -9 6/7

0 1 0 1 6/7 - 3/7 1/7 0 3/7 - 1/7 0 5 2/7

0 0 1 -1 3/14 5/14 - 2/7 0 - 5/14 2/7 0 1 3/7

0 0 0 2 1/14 3/14 3/7 -1 - 3/14 - 3/7 1 9 6/7

z x1 x2 x3 x4 x5 x6 x′4 x′5 x′6 RHS

1 1 3/26 0 0 - 9/13 - 7/26 1 1 9/13 1 7/26 0 -3 25/26

0 7/13 0 1 - 3/13 1/13 0 3/13 - 1/13 0 2 11/13

0 17/26 1 0 1/13 - 5/26 0 - 1/13 5/26 0 4 23/26

0 -1 3/26 0 0 9/13 7/26 -1 - 9/13 - 7/26 1 3 25/26

z x1 x2 x3 x4 x5 x6 x′4 x′5 x′6 RHS

1 0 0 0 0 0 0 1 1 1 0

0 1/6 0 1 0 1/6 - 1/3 0 - 1/6 1/3 4 1/6

0 7/9 1 0 0 - 2/9 1/9 0 2/9 - 1/9 4 4/9

0 -1 11/18 0 0 1 7/18 -1 4/9 -1 - 7/18 1 4/9 5 13/18

Phase 2

z x1 x2 x3 x4 x5 x6 RHS

1 600 500 700 0 0 0 0

0 1/6 0 1 0 1/6 - 1/3 4 1/6

0 7/9 1 0 0 - 2/9 1/9 4 4/9

0 -1 11/18 0 0 1 7/18 -1 4/9 5 13/18
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100 Solutions for Exercises

z x1 x2 x3 x4 x5 x6 RHS

1 94 4/9 0 0 0 -5 5/9 177 7/9 -5138 8/9

0 1/6 0 1 0 1/6 - 1/3 4 1/6

0 7/9 1 0 0 - 2/9 1/9 4 4/9

0 -1 11/18 0 0 1 7/18 -1 4/9 5 13/18

z x1 x2 x3 x4 x5 x6 RHS

1 71 3/7 0 0 14 2/7 0 157 1/7 -5057 1/7

0 6/7 0 1 - 3/7 0 2/7 1 5/7

0 - 1/7 1 0 4/7 0 - 5/7 7 5/7

0 -4 1/7 0 0 2 4/7 1 -3 5/7 14 5/7

(3) Phase 1

z x1 x2 x3 x4 x5 x7 x′5 x′6 RHS

1 0 0 0 0 0 0 1 1 0

0 1 -2 1 0 -1 0 1 0 20

0 2 4 1 0 0 0 0 1 50

0 1 0 0 1 0 1 0 0 10

z x1 x2 x3 x4 x5 x7 x′5 x′6 RHS

1 -3 -2 -2 0 1 0 0 0 -70

0 1 -2 1 0 -1 0 1 0 20

0 2 4 1 0 0 0 0 1 50

0 1 0 0 1 0 1 0 0 10

z x1 x2 x3 x4 x5 x7 x′5 x′6 RHS

1 0 -2 -2 3 1 3 0 0 -40

0 0 -2 1 -1 -1 -1 1 0 10

0 0 4 1 -2 0 -2 0 1 30

0 1 0 0 1 0 1 0 0 10

z x1 x2 x3 x4 x5 x7 x′5 x′6 RHS

1 0 0 -1 1/2 2 1 2 0 1/2 -25

0 0 0 1 1/2 -2 -1 -2 1 1/2 25

0 0 1 1/4 - 1/2 0 - 1/2 0 1/4 7 1/2

0 1 0 0 1 0 1 0 0 10
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z x1 x2 x3 x4 x5 x7 x′5 x′6 RHS

1 0 0 0 0 0 0 1 1 0

0 0 0 1 -1 1/3 - 2/3 -1 1/3 2/3 1/3 16 2/3

0 0 1 0 - 1/6 1/6 - 1/6 - 1/6 1/6 3 1/3

0 1 0 0 1 0 1 0 0 10

Phase 2

z x1 x2 x3 x4 x5 x7 RHS

1 -2 -5 -3 -1 0 0 0

0 0 0 1 -1 1/3 - 2/3 -1 1/3 16 2/3

0 0 1 0 - 1/6 1/6 - 1/6 3 1/3

0 1 0 0 1 0 1 10

z x1 x2 x3 x4 x5 x7 RHS

1 0 0 0 -3 5/6 -1 1/6 -2 5/6 86 2/3

0 0 0 1 -1 1/3 - 2/3 -1 1/3 16 2/3

0 0 1 0 - 1/6 1/6 - 1/6 3 1/3

0 1 0 0 1 0 1 10

z x1 x2 x3 x4 x5 x7 RHS

1 3 5/6 0 0 0 -1 1/6 1 125

0 1 1/3 0 1 0 - 2/3 0 30

0 1/6 1 0 0 1/6 0 5

0 1 0 0 1 0 1 10

z x1 x2 x3 x4 x5 x7 RHS

1 5 7 0 0 0 1 160

0 2 4 1 0 0 0 50

0 1 6 0 0 1 0 30

0 1 0 0 1 0 1 10

Optimal Solution (x∗1, x
∗
2, x
∗
3, x
∗
4)=(0, 0, 50,10) and z∗ = 160.

(4)

a. False. If the problem is unbounded, then the best corner point is not optimal solution.

b. x2 = −x′2 where x′2 ≥ 0

x3 = x+
3 − x

−
3 where x+

3 , x
−
3 ≥ 0

x1 + x′2 + 2(x+
3 − x

−
3 )− x4 = 1 and x4 ≥ 0
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c. False. For a problem with alternative optimal solutions or in case of degeneracy, the

objective function value might stay the same.

d. If Big-M method leads to an optimal solution with an objective that is a function of M or

if the first phase of two-phase method leads to a non-zero answer, the problem is infeasible.

e. False. Depending on objective function’s direction it may not be increased indefinitely.

e.g., max−x1 s.t. x1 ≥ 0 has an unbounded feasible region but a bounded objective func-

tion.

(5)

Phase 1

z x1 x2 x3 x4 x5 x′5 RHS

-1 0 0 0 0 0 1 0

0 1 2 -1 -1 0 1 5

0 -3 -1 1 0 1 0 4

z x1 x2 x3 x4 x5 x′5 RHS

-1 -1 -2 1 1 0 0 -5

0 1 2 -1 -1 0 1 5

0 -3 -1 1 0 1 0 4

z x1 x2 x3 x4 x5 x′5 RHS

-1 0 0 0 0 0 1 0

0 0.5 1 -0.5 -0.5 0 0.5 2.5

0 -2.5 0 0.5 -0.5 1 0.5 6.5

Phase 2

z x1 x2 x3 x4 x5 RHS

-1 3 -3 1 0 0 0

0 0.5 1 -0.5 -0.5 0 2.5

0 -2.5 0 0.5 -0.5 1 6.5

z x1 x2 x3 x4 x5 RHS

-1 4.5 0 -0.5 -1.5 0 7.5

0 0.5 1 -0.5 -0.5 0 2.5

0 -2.5 0 0.5 -0.5 1 6.5

The problem is unbounded.
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(6) Yes, it is possible if the objective function is parallel to a constraint and the region

is unbounded in an opposite direction. e.g., max−x1 s.t. x1 ≥ 0, x2 ≥ 0 has an unbounded

feasible region but has alternative optima.

(7)

z x1 x2 x3 x′4 RHS

1 -2 -3 0 M 0

0 1 2 1 0 4

0 1 1 0 1 3

z x1 x2 x3 x′4 RHS

1 -M-2 -M-3 0 0 -3M

0 1 2 1 0 4

0 1 1 0 1 3

z x1 x2 x3 x′4 RHS

1 -M/2-1/2 0 M/2+3/2 0 -M+6

0 0.5 1 0.5 0 2

0 0.5 0 -0.5 1 1

z x1 x2 x3 x′4 RHS

1 0 0 1 M+1 7

0 0 1 1 -1 1

0 1 0 -1 2 2

Optimal Solution (x∗1, x
∗
2)=(2,1) and z∗ = 7.
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6.3 Chapter 3 Exercises

(1)

cBB
−1N − cN =

[
c1 2 c3

]
1 −1 −2

−1/2 1 3/2

3/2 −2 −5/2




1 0 0

0 1 0

0 0 1

− [
0 0 0

]
=

[
f04 3 7/2

]

[
c1 − 1 + 3c3/2 2− c1 − 2c3 3− 2c1 − 5c3/2

]
=

[
f04 3 7/2

]
From the equation, c1 = 1, c3 = −1.

xB : x1, x2, x3 is given and we know from the question that x4, x2, x3 will be basic vari-

ables at the next iteration. It means that x1 will leave and x4 will enter. Then the pivot is

in the first row of x4 column.

B−1 = EB−1
old =


1 0 0

1/2 1 0

−3/2 0 1




1 −1 −2

−1/2 1 3/2

3/2 −2 −5/2

 =


1 −1 −2

0 1/2 1/2

0 −1/2 1/2



B−1b =


1 −1 −2

0 1/2 1/2

0 −1/2 1/2




60

10

20

 =


10

15

5



cBB
−1b =

[
0 2 −1

]
10

15

5

 = 25

Optimal solution is x∗1 = 0, x∗2 = 15, x∗3 = 5, z∗ = 25

(2)

a.

xB = x1, x2, x6, x7

B =


8 2 0 0

4 3 0 0

2 3 1 0

0 0 0 1
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B=1 =


3/16 −1/8 0 0

−1/4 1/2 0 0

3/8 −5/4 1 0

0 0 0 1



B−1b =


3/16 −1/8 0 0

−1/4 1/2 0 0

3/8 −5/4 1 0

0 0 0 1




200

100

50

20

 =


25

0

0

20


It is a basic feasible solution.

b.

cBB
−1N − cN =

[
20 6 0 0

]


3/16 −1/8 0 0

−1/4 1/2 0 0

3/8 −5/4 1 0

0 0 0 1




3 1 0

3 0 1

1 0 0

1 0 0

−
[

8 0 0
]

=
[

1/4 9/4 1/2
]

cBB
−1b =

[
20 6 0 0

]


25

0

0

20

 = 500

Optimal solution is x∗1 = 25, x∗2 = 0, x∗3 = 0, z∗ = 500

(3) a.

xB = x1, x2, x3

B =


1 2 −1

−1 4 2

3 1 −1

 B−1 =


−6/17 1/17 8/17

5/17 2/17 −1/17

−13/17 5/17 6/17

 B−1b =


−6/17 1/17 8/17

5/17 2/17 −1/17

−13/17 5/17 6/17




2

5

4

 =


25/17

16/17

23/17


it is feasible.

(b)
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cBB
−1N − cN =

[
c1 c2 c3

]
−6/17 1/17 8/17

5/17 2/17 −1/17

−13/17 5/17 6/17




1 0 0

0 −1 0

0 0 1

− [
0 0 0

]
≥

[
0 0 0

]

Then, [
−6c1 + 5c2 − 13c3 −c1 − 2c2 − 5c3 8c1 − 5c2 + 6c3

]
≥

[
0 0 0

]

From the inequality above we get, c1 ≥ 0, c2 ≥ 0, c3 ≤ 0 and c1 ≥ −3c3. As an example,

when c1 = 3, c2 = 1, c3 = −1 this iteration gives optimal solution.

(c)

cBB
−1N − cN =

[
0 4 0

]
−6/17 −1/17 8/17

5/17 −2/17 −1/17

−13/17 −5/17 6/17

 =
[

7/6 −1/2 −1/4
]

It is not optimal and x5 must enter but x5 column of the matrix B−1N has negative num-

bers. So, optimal solution is unbounded.

(4)

B−1 =

 0.30 −0.10

−0.20 0.40

 B−1

1 4 2 −1 0

3 2 2 0 −1

 =

0 1 0.40 −0.30 0.10

1 0 0.40 0.20 −0.40



x1 and x2 are basic variables.

cBB
−1N − cN =

[
−3 −2

]0.40 −0.30 0.10

0.40 0.20 −0.40

− [
−2 0 0

]
=

[
0 0.5 0.5

]

B−1b =

 0.30 −0.10

−0.20 0.40

8

6

 =

1.8

0.8

 cBB
−1b =

[
−3 −2

]1.8

0.8

 = −7
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z x1 x2 x3 x4 x̄5 x6 x̄7 RHS

1 0 0 0 0.5 M - 0.5 0.5 M-0.5 -7

0 0 1 0.4 -0.3 0.3 0.1 -0.1 1.8

0 1 0 0.4 0.2 -0.2 -0.4 0.4 0.8

(5)

xB = x1, x2, x6

xN = x3, x4, x5

B =


1 4 0

3 2 0

1 1 1

 B−1 =


−1/5 2/5 0

3/10 −1/10 0

−1/10 −3/10 1

 B−1b =


−1/5 2/5 0

3/10 −1/10 0

−1/10 −3/10 1




8

6

5

 =


4/5

9/5

12/5

Feasible

cBB
−1N−cN =

[
−2 −3 0

]
−1/5 2/5 0

3/10 −1/10 0

−1/10 −3/10 1




2 −1 0

0 0 −1

1 0 0

−[ 1 0 0
]

=
[
−2 1/2 1/2

]
x3 enters

B−1N =


−2/5 1/5 −2/5

3/5 −3/10 1/10

4/5 1/10 3/10

min{9/5

3/5
,

12/5

4/5
} = 3

Because both give 3, we can choose any of them. Let’s assume that x2 leaves.

Next Iteration

xB = x1, x3, x6

xN = x2, x4, x5

B−1 = EB−1
old =


1 2/3 0

0 5/3 0

0 −4/3 1



−1/5 2/5 0

3/10 −1/10 0

−1/10 −3/10 1

 =


0 1/3 0

1/2 −1/6 0

−1/2 −1/6 1



cBB
−1N−cN =

[
−2 1 0

]
0 1/3 0

1/2 −1/6 0

−1/2 −1/6 1




4 −1 0

2 0 −1

1 0 0

−[−3 0 0
]

=
[

10/3 −1/2 5/6
]
x4 enters
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B−1b =


0 1/3 0

1/2 −1/6 0

−1/2 −1/6 1




8

6

5

 =


2

3

0



B−1N =


2/3 0 −1/3

5/3 −1/2 1/6

−4/3 1/2 1/6

min{ 0

1/2
} = 0 x6leaves.

Next Iteration

xB = x1, x3, x4

xN = x2, x6, x5

B−1 = EB−1
old =


1 0 0

0 1 1

0 0 2




0 1/3 0

1/2 −1/6 0

−1/2 −1/6 1

 =


0 1/3 0

0 −1/3 1

−1 −1/3 2



cBB
−1N − cN =

[
−2 1 0

]
0 1/3 0

0 −1/3 1

−1 −1/3 2




4 0 0

2 0 −1

1 1 0

− [
−3 0 0

]
=

[
2 1 1

]
Optimal

B−1b =


0 1/3 0

0 −1/3 1

−1 −1/3 2




8

6

5

 =


2

3

0

 cBB
−1b =

[
−2 1 0

]
2

3

0

 = −1

Optimal solution is x∗1 = 2, x∗2 = 0, x∗3 = 3, z∗ = 1

(6)

xB = x1, x2, x6, x7

xN = x3, x4, x5
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B =


1 4 0 0

3 2 0 0

1 1 1 0

1 0 0 1

 B−1 =


−1/5 2/5 0 0

3/10 −1/10 0 0

−1/10 −3/10 1 0

1/5 −2/5 0 1

 B−1b =


−1/5 2/5 0 0

3/10 −1/10 0 0

−1/10 −3/10 1 0

1/5 −2/5 0 1




8

6

5

4

 =


4/5

9/5

12/5

16/5

Feasible

cBB
−1N−cN =

[
−2 −3 0 0

]

−1/5 2/5 0 0

3/10 −1/10 0 0

−1/10 −3/10 1 0

1/5 −2/5 0 1




2 −1 0

0 0 −1

1 0 0

0 0 0

−
[

1 0 0
]

=
[
−2 1/2 1/2

]
x3 enters

B−1N =


−2/5 1/5 −2/5

3/5 −3/10 1/10

4/5 1/10 3/10

2/5 −1/5 2/5

min{9/5

3/5
,

12/5

4/5
,

16/5

2/5
} = 3

Because both give 3, we can choose any of them. Let’s assume that x2 leaves.

Next Iteration

xB = x1, x3, x6, x7

xN = x2, x4, x5

B−1 = EB−1
old =


1 2/3 0 0

0 5/3 0 0

0 −4/3 1 0

0 −2/3 0 1




−1/5 2/5 0 0

3/10 −1/10 0 0

−1/10 −3/10 1 0

1/5 −2/5 0 1

 =


0 1/3 0 0

1/2 −1/6 0 0

−1/2 −1/6 1 0

0 −1/3 0 1



cBB
−1N−cN =

[
−2 1 0 0

]


0 1/3 0 0

1/2 −1/6 0 0

−1/2 −1/6 1 0

0 −1/3 0 1




4 −1 0

2 0 −1

1 0 0

0 0 0

−
[
−3 0 0

]
=

[
10/3 −1/2 5/6

]
x4 enters
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B−1b =


0 1/3 0 0

1/2 −1/6 0 0

−1/2 −1/6 1 0

0 −1/3 0 1




8

6

5

4

 =


2

3

0

2



B−1N =


2/3 0 −1/3

5/3 −1/2 1/6

−4/3 1/2 1/6

−2/3 0 1/3

min{ 0

1/2
} = 0 x6leaves.

Next Iteration

xB = x1, x3, x4, x7

xN = x2, x6, x5

B−1 = EB−1
old =


1 0 0 0

0 1 1 0

0 0 2 0

0 0 0 1




0 1/3 0 0

1/2 −1/6 0 0

−1/2 −1/6 1 0

0 −1/3 0 1

 =


0 1/3 0 0

0 −1/3 1 0

−1 −1/3 2 0

0 −1/3 0 1



cBB
−1N − cN =

[
−2 1 0 0

]


0 1/3 0 0

0 −1/3 1 0

−1 −1/3 2 0

0 −1/3 0 1




4 0 0

2 0 −1

1 1 0

0 0 0

−
[
−3 0 0

]
=

[
2 1 1

]
Optimal

B−1b =


0 1/3 0 0

0 −1/3 1 0

−1 −1/3 2 0

0 −1/3 0 1




8

6

5

4

 =


2

3

0

2

 cBB
−1b =

[
−2 1 0 0

]


2

3

0

2

 = −1

Optimal solution is x∗1 = 2, x∗2 = 0, x∗3 = 3, z∗ = 1
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6.4 Chapter 4 Exercises

(1)

max −3y1 + 2y2

s.t. −2y1 + y2 ≤ 2

5y1 + 6y2 ≤ 15

−4y1 + 3y2 ≤ 5

3y1 + y2 ≤ 6

y1 ≤ 0, y2 ≥ 0

(2)

a.

min 10y1 + 5y2

s.t. y1 + 3y2 ≤ 4

y1 + y2 ≥ 1

y1 ≥ 0, y2 ≤ 0

b.

Primal Dual

x1 x2 x3 x4 z Feasible? y1 y2 y3 y4 z Feasible?

0 0 10 -5 0 Infeasible 0 0 4 -1 0 Infeasible

0 10 0 5 10 Feasible 1 0 3 0 10 Feasible

0 5 5 0 5 Feasible 0 1 1 0 5 Infeasible

10 0 0 25 40 Infeasible 4 0 0 3 40 Feasible

5/3 0 25/3 0 20/3 Infeasible 0 4/3 0 1/3 20/3 Infeasible

-5/2 25/2 0 0 5/2 Feasible -1/2 3/2 0 0 5/2 Infeasible

Optimal solution is x∗1 = 0, x∗2 = 10, z∗ = 10

(3)

a. The procedure is straightforward and omitted here for brevity.

Final tableau:
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z x1 x2 x3 x4 x5 x6 RHS

-1 2/3 2/3 0 1/3 0 2/3 -10/3

0 1/3 4/3 0 5/3 1 1/3 19/3

0 2/3 - 1/3 1 - 2/3 0 - 1/3 5/3

b.

B−1 =

 1 −1/3

0 1/3

. It is easy to see that when b1 changes from 8 to 1, the basis is not

feasible as B−1

1

5

 � 0. Next, you need to apply dual simplex!

(4)

min 5y1 + 4y2 + 6y3

s.t. −2y1 + 2y2 ≤ −2

y1 − 2y3 ≥ 3

3y1 + y2 + y3 ≥ 5

y1 + y3 = 0

y1 ≤ 0, y2urs, y3 ≥ 0

Primal Dual

x1 x2 x3 x4 x5 x6 z Feasible? y1 y2 y3 y4 y5 y6 z Feasible?

0 0 4 -7 0 9 20 Feasible 0 5 0 -12 -3 0 20 Infeasible

0 0 4 2 9 0 20 Feasible 0 5 0 -12 -3 0 20 Infeasible

0 -3 4 -4 0 0 11 Infeasible 1 3 -1 -6 0 0 11 Infeasible

2 0 0 9 0 -3 -4 Infeasible 0 -1 0 0 -3 -6 -4 Infeasible

2 0 0 6 -3 0 -4 Infeasible 0 -1 0 0 -3 -6 -4 Infeasible

3/2 0 1 5 0 0 2 Infeasible 2 1 -2 0 3 0 2 Infeasible

2 1 0 8 0 0 -1 Infeasible -1 -2 1 0 0 -9 -7 Infeasible

Optimal solution goes infinity.

(5)

a.

min −x1 + c2x2 − x3

s.t. −x1 − x2 + x3 ≤ 1
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2x1 − x2 + x3 ≤ 2

x1 ≥ −2

x1 ≤ 1

x3 ≥ −2

x3 ≤ −1

x1, x2, x3urs

max y1 + 2y2 − 2y3 + y4 − 2y5 − y6

s.t. −y1 + 2y2 + y3 + y4 = −1

−y1 − y2 = c2

y1 + y2 + y5 + y6 = −1

y1, y2, y4, y6 ≤ 0, y3, y5 ≥ 0

b.

x1 x2 x3 x4 x5 x6 x7 x8 x9

-1 2 -1 3 7 1 2 1 0

The solution is feasible but it is not a feasible corner point. For it to be a feasible corner

points there must be 3 non-basic variables but there is only one non-basic variable. That’s

why this solution cannot be a optimal solution and doesn’t depend on value of c2.

c.

x1 x2 x3 x4 x5 x6 x7 x8 x9

1/3 -10/3 -2 0 0 7/3 2/3 0 1

This solution is a feasible and a corner point. To check whether it is optimal or not we

should calculate its corresponding dual variables.

y1 y2 y3 y4 y5 y6

1−2c2
3

−1−c2
3 0 0 -1+c2 0

This solution can be optimal if necessary conditions are provided for c2.

y1 = 1−2c2
3 ≤ 0 , c2 ≥ 1/2

y2 = −1−c2
3 ≤ 0 , c2 ≥ −1

y5 = −1 + c2 ≥ 0 , c2 ≥ 1

While c2 ≥ 1, this solution is optimal solution.
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d.

Primal Dual

x1 x2 x3 x4 x5 x6 x7 x8 x9 y1 y2 y3 y4 y5 y6

1/3 - 7/3 -1 0 0 7/3 2/3 1 0 -1/3 -2/3 0 0 0 0

(6)

If P is infeasible, then D is infeasible or unbounded. If there exists a feasible solution for D,

then D cannot be infeasible. Thus, we can conclude that D is unbounded.

6.5 Chapter 5 Exercises

(1)

a.

B−1b =

 1 0

−4 1

30

90

 =

 30

−30

 , cBB−1b =
[

5 0
] 30

−30

 = 150

z x1 x2 x3 x4 x5 RHS

1 0 0 2 5 0 150

0 -1 1 3 1 0 30

0 16 0 -2 -4 1 -30

z x1 x2 x3 x4 x5 RHS

1 16 0 0 1 1 120

0 23 1 0 -5 3 -15

0 -8 0 1 2 -1/2 15

z x1 x2 x3 x4 x5 RHS

1 57/5 1/5 0 0 8/5 117

0 -23/5 -1/5 0 1 -3/5 3

0 6/5 -2/5 1 0 1/5 9

Optimal solution is x∗1 = 0, x∗2 = 0, x∗3 = 9, z∗ = 117

b.
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Solutions for Exercises 115

B−1b =

 1 0

−4 1

20

70

 =

 20

−10

 , cBB−1b =
[

5 0
] 20

−10

 = 100

z x1 x2 x3 x4 x5 RHS

1 0 0 2 5 0 100

0 -1 1 3 1 0 20

0 16 0 -2 -4 1 -10

z x1 x2 x3 x4 x5 RHS

1 16 0 0 1 1 90

0 23 1 0 -5 3 5

0 -8 0 1 2 -1 5

Optimal solution is x∗1 = 0, x∗2 = 5, x∗3 = 5, z∗ = 90

c.

B−1b =

 1 0

−4 1

 10

100

 =

10

60

 , feasible, cBB
−1b =

[
5 0

]10

60

 = 50

d.

cBB
−1A3 − c3 =

[
5 0

] 3

−2

− 8 = 7, optimal

z x1 x2 x3 x4 x5 RHS

1 0 0 7 5 0 100

0 -1 1 3 1 0 20

0 16 0 -2 -4 1 10

e.

cBB
−1A1 − c1 =

[
5 0

] 1 0

−4 1

0

5

− (−2) =
[

5 0
]0

5

 + 2 = 2, optimal
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z x1 x2 x3 x4 x5 RHS

1 2 0 2 5 0 100

0 0 1 3 1 0 20

0 5 0 -2 -4 1 10

f.

cBB
−1A2 − c2 =

[
5 0

] 1 0

−4 1

2

5

− 6 =
[

5 0
] 2

−3

− 6 = 4

z x1 x2 x3 x4 x5 RHS

1 0 4 2 5 0 100

0 -1 2 3 1 0 20

0 16 -3 -2 -4 1 10

z x1 x2 x3 x4 x5 RHS

1 2 0 -4 3 0 60

0 -1/2 1 3/2 1/2 0 10

0 29/2 0 5/2 -5/2 1 40

z x1 x2 x3 x4 x5 RHS

1 2/3 8/3 0 13/3 0 260/3

0 - 1/3 2/3 1 1/3 0 20/3

0 46/3 -5/3 0 -10/3 1 70/3

Optimal solution is x∗1 = 0, x∗2 = 0, x∗3 = 20/3, z∗ = 260/3

g.

cBB
−1A6 − c6 =

[
5 0

] 1 0

−4 1

3

5

− 10 =
[

5 0
] 3

−7

− 10 = 5, optimal.

z x1 x2 x3 x4 x5 x6 RHS

1 0 0 2 5 0 5 100

0 -1 1 3 1 0 3 20

0 16 0 -2 -4 1 -7 10
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h.

z x1 x2 x3 x4 x5 x6 RHS

1 0 0 2 5 0 0 100

0 -1 1 3 1 0 0 20

0 16 0 -2 -4 1 0 10

0 2 3 5 0 0 1 50

z x1 x2 x3 x4 x5 x6 RHS

1 0 0 2 5 0 0 100

0 -1 1 3 1 0 0 20

0 16 0 -2 -4 1 0 10

0 5 0 -4 -3 0 1 -10

z x1 x2 x3 x4 x5 x6 RHS

1 5/2 0 0 7/2 0 1/2 95

0 1/4 1 0 -5/4 0 3/4 25/2

0 27/2 0 0 -5/2 1 -1/2 15

0 -5/4 0 1 3/4 0 -1/4 5/2

Optimal solution is x∗1 = 0, x∗2 = 25/2, x∗3 = 5/2, z∗ = 95

i.

B =

1 0

5 1

 , B−1 =

 1 0

−5 1



B−1N =

 1 0

−5 1

−1 3 1

10 10 0

 =

−1 3 1

15 −5 −5



cBB
−1N − cN =

[
5 0

]−1 3 1

15 −5 −5

− [
−5 13 0

]
=

[
0 2 5

]

B−1b =

 1 0

−5 1

 20

100

 =

20

0

 , cBB−1b =
[

5 0
]20

0

 = 100
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z x1 x2 x3 x4 x5 RHS

1 0 0 2 5 0 100

0 -1 1 3 1 0 20

0 15 0 -5 -5 1 0

Optimal solution is x∗1 = 0, x∗2 = 20, x∗3 = 0, z∗ = 100

(2)

a.

B−1b =


1 −1 −2

0 1/2 1/2

0 −1/2 1/2




70

20

10

 =


30

15

−5

 , cBB−1b =
[

0 2 −1
]

30

15

−5

 = 35

z x1 x2 x3 x4 x5 x6 RHS

1 0 0 3/2 0 3/2 1/2 35

0 0 0 1 1 -1 -2 30

0 1 0 1/2 0 1/2 1/2 15

0 0 1 -3/2 0 -1/2 1/2 -5

z x1 x2 x3 x4 x5 x6 RHS

1 0 1 0 0 1 1 30

0 0 2/3 0 1 -4/3 -5/3 80/3

0 1 1/3 0 0 1/3 2/3 40/3

0 0 -2/3 1 0 1/3 -1/3 10/3

Optimal solution is x∗1 = 40/3, x∗2 = 0, x∗3 = 10/3, z∗ = 30

b.

B−1A1 =


1 −1 −2

0 1/2 1/2

0 −1/2 1/2




2

0

0

 =


2

0

0


x4, x1, x2 cannot construct a basis. Their constraints are linearly dependent. We have to

solve the problem from the scratch.

c.
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B−1A3 =


1 −1 −2

0 1/2 1/2

0 −1/2 1/2




3

1

−2

 =


6

−1/2

−3/2



cBB
−1A3 − c3 =

[
0 2 −1

]
6

−1/2

−3/2

− 2 = −3/2

z x1 x2 x3 x4 x5 x6 RHS

1 0 0 -3/2 0 3/2 1/2 25

0 0 0 6 1 -1 -2 10

0 1 0 -1/2 0 1/2 1/2 15

0 0 1 -3/2 0 -1/2 1/2 5

z x1 x2 x3 x4 x5 x6 RHS

1 0 0 0 1/4 5/4 0 55/2

0 0 0 1 1/6 -1/6 -1/3 5/3

0 1 0 0 1/12 5/12 1/3 95/6

0 0 1 0 1/4 -3/4 0 15/2

Optimal solution is x∗1 = 95/6, x∗2 = 15/2, x∗3 = 5/3, z∗ = 55/2

d.

z x1 x2 x3 x4 x5 x6 RHS

1 -3 2 -3 0 0 0 0

0 0 0 1 1 -1 -2 10

0 1 0 1/2 0 1/2 1/2 15

0 0 1 -3/2 0 -1/2 1/2 5

z x1 x2 x3 x4 x5 x6 RHS

1 0 0 3/2 0 5/2 1/2 35

0 0 0 1 1 -1 -2 10

0 1 0 1/2 0 1/2 1/2 15

0 0 1 -3/2 0 -1/2 1/2 5
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e.

z x1 x2 x3 x4 x5 x6 x7 RHS

1 0 0 3/2 0 3/2 1/2 0 25

0 0 0 1 1 -1 -2 0 10

0 1 0 1/2 0 1/2 1/2 0 15

0 0 1 -3/2 0 -1/2 1/2 0 5

0 3 -2 1 0 0 0 1 30

z x1 x2 x3 x4 x5 x6 x7 RHS

1 0 0 3/2 0 3/2 1/2 0 25

0 0 0 1 1 -1 -2 0 10

0 1 0 1/2 0 1/2 1/2 0 15

0 0 1 -3/2 0 -1/2 1/2 0 5

0 0 0 -7/2 0 -5/2 -1/2 1 -5

z x1 x2 x3 x4 x5 x6 x7 RHS

1 0 0 0 0 3/7 2/7 3/7 160/7

0 0 0 0 1 -12/7 -15/7 2/7 40/7

0 1 0 0 0 1/7 3/7 1/7 100/7

0 0 1 0 0 4/7 5/7 -3/7 50/7

0 0 0 1 0 5/7 1/7 -2/7 10/7

Optimal solution is x∗1 = 100/7, x∗2 = 50/7, x∗3 = 10/7, z∗ = 160/7

f.

cBB
−1A8−c8 =

[
0 2 −1

]
1 −1 −2

0 1/2 1/2

0 −1/2 1/2



−2

1

−2

−(−1) =
[

0 2 −1
]

1

−0.5

−1.5

+1 = 1.5, optimal.

(3)

a.

B−1b =

1 −1

0 1

20

30

 =

−10

30

 , cBB−1b =
[

0 2
]−10

30

 = 60
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z x1 x2 x3 x4 x5 RHS

1 0 1 1 0 2 60

0 0 -1 5 1 -1 -10

0 1 4 -1 0 1 30

z x1 x2 x3 x4 x5 RHS

1 0 0 6 1 1 50

0 0 1 -5 -1 1 10

0 1 0 19 4 -3 -10

z x1 x2 x3 x4 x5 RHS

1 1/3 0 37/3 7/3 0 140/3

0 1/3 1 4/3 1/3 0 20/3

0 -1/3 0 -19/3 -4/3 1 10/3

Optimal solution is x∗1 = 0, x∗2 = 20/3, x∗3 = 0, z∗ = 140/3

b.

cBB
−1A3−c3 =

[
0 2

]1 −1

0 1

 3

−2

−(−2) =
[

0 2
] 5

−2

+2 = −2, not optimal (suboptimal).

z x1 x2 x3 x4 x5 RHS

1 0 1 -2 0 2 20

0 0 -1 5 1 -1 20

0 1 4 -2 0 1 10

z x1 x2 x3 x4 x5 RHS

1 0 3/5 0 2/5 8/5 28

0 0 -1/5 1 1/5 -1/5 4

0 1 18/5 -0 2/5 3/5 18

Optimal solution is x∗1 = 18, x∗2 = 0, x∗3 = 0, z∗ = 28

c.
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cBB
−1A1 − c1 =

[
0 2

]1 −1

0 1

3

2

− 4 =
[

0 2
]1

2

− 4 = 0

z x1 x2 x3 x4 x5 RHS

1 0 1 1 0 2 20

0 1 -1 5 1 -1 20

0 2 4 -1 0 1 10

z x1 x2 x3 x4 x5 RHS

1 0 1 1 0 2 20

0 0 -3 11/2 1 -3/2 15

0 1 2 -1/2 0 1/2 5

Optimal solution is x∗1 = 5, x∗2 = 0, x∗3 = 0, z∗ = 20

e.

z x1 x2 x3 x4 x5 RHS

1 -1 -5 2 0 0 0

0 0 -1 5 1 -1 20

0 1 4 -1 0 1 10

z x1 x2 x3 x4 x5 RHS

1 0 -1 1 0 1 10

0 0 -1 5 1 -1 20

0 1 4 -1 0 1 10

z x1 x2 x3 x4 x5 RHS

1 1/4 0 3/4 0 5/4 25/2

0 1/4 0 19/4 1 -3/4 45/2

0 1/4 1 -1/4 0 1/4 5/2

Optimal solution is x∗1 = 0, x∗2 = 5/2, x∗3 = 0, z∗ = 25/2

f.
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z x1 x2 x3 x4 x5 x6 RHS

1 0 1 1 0 2 0 20

0 0 -1 5 1 -1 0 20

0 1 4 -1 0 1 0 10

0 3 2 3 0 0 1 25

z x1 x2 x3 x4 x5 x6 RHS

1 0 1 1 0 2 0 20

0 0 -1 5 1 -1 0 20

0 1 4 -1 0 1 0 10

0 0 -10 6 0 -3 1 -5

z x1 x2 x3 x4 x5 x6 RHS

1 0 0 8/5 0 17/10 1/10 39/2

0 0 0 22/5 1 -7/10 -1/10 41/2

0 1 0 7/5 0 -1/5 2/5 8

0 0 -1 -3/5 0 3/10 -1/10 1/2

Optimal solution is x∗1 = 8, x∗2 = 1/2, x∗3 = 0, z∗ = 39/2

g.

B =

1 1

0 1

 , B−1 =

1 −1

0 1



cBB
−1N−cN =

[
0 2

] 1 −1

0 1

 3 4 0

2 2 1

−[−7 −3 0
]

=
[

0 2
] 1 2 −1

2 2 1

−[ 7 −3 0
]

=
[
−3 7 2

]

(4)

z x1 x2 x3 x4 x5 x6 x7 RHS

-1 7 2 5 4 0 0 0 0

0 -2 -4 -7 -1 1 0 0 -5

0 -8 -4 -6 -4 0 1 0 -8

0 -3 -8 -1 -4 0 0 1 -4
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z x1 x2 x3 x4 x5 x6 x7 RHS

-1 3 0 2 2 0 1/2 0 -4

0 6 0 -1 3 1 -1 0 3

0 2 1 3/2 1 0 1/4 0 2

0 13 0 11 4 0 -2 1 12

Optimal solution is x∗1 = 0, x∗2 = 2, x∗3 = 0, x∗4 = 0, z∗ = 4

(5)

z x1 x2 x3 x4 x5 x6 x7 RHS

-1 5 3 5 0 4 0 0 0

0 1 0 1 0 0 1 0 5

0 0 -1 0 0 -1 0 1 -3

0 1 1 1 1 0 0 0 7

z x1 x2 x3 x4 x5 x6 x7 RHS

-1 5 0 5 0 1 0 3 -9

0 1 0 1 0 0 1 0 5

0 0 1 0 0 1 0 -1 3

0 1 0 1 1 -1 0 1 4

Optimal solution is x∗1 = 0, x∗2 = 3, x∗3 = 0, x∗4 = 4, x∗5 = 0, z∗ = 9
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